
TEAMSCALE: Tackle Technical Debt and
Control the Quality of Your Software*
Roman Haas
CQSE GmbH

Munich, Germany
haas@cqse.eu

Rainer Niedermayr
CQSE GmbH, University of Stuttgart

Munich, Germany
niedermayr@cqse.eu

Elmar Juergens
CQSE GmbH

Munich, Germany
juergens@cqse.eu

Abstract—TEAMSCALE is a software intelligence platform, that
is, it creates transparency on code quality and the underlying
software development process. This makes it possible for de-
velopers, testers and managers to better understand and control
technical debt of their systems. In this paper, we give an overview
of TEAMSCALE and how this tool can be used in practice to
control and lower technical debt in the long run. We explain
which code analyses can be used to identify and address technical
debt. TEAMSCALE is available for free for research and teaching
purposes at www.teamscale.io.

Index Terms—Technical Debt, Software Quality, Quality Con-
trol

I. SOFTWARE INTELLIGENCE

Hassan and Xie [6] defined Software Intelligence as con-
cepts and techniques that offer software practitioners up-to-
date and pertinent information to support their daily decision-
making processes. TEAMSCALE is a software intelligence plat-
form, which analyzes source code and raw data from software
development and the underlying process. So, the analysis
results help to better understand the quality of software and
make it possible to control and lower technical debt.

II. OVERVIEW OF TEAMSCALE

The basic idea behind TEAMSCALE is to gather all relevant
data at a central place, and immediately provide analysis
results from this data using incremental analysis [1]. TEAM-
SCALE processes data from version control systems, issue
trackers, and various third-party analysis tools like language-
specific code checkers or test coverage tools (see Fig. 1).
The results are available for the whole version history and all
development branches in the web client of TEAMSCALE [5]. In
addition, plugins in the IDE allow developers to view findings
and further information directly in their working environment.
Using the pre-commit feature of the IDE plugins, analysis
results are provided not only in real-time [7], but even without
needing to commit the changes to the version control system.
That is, developers get feedback on their code changes in real-
time and can address new findings immediately.

* This work was partially funded by the German Federal Ministry of Edu-
cation and Research (BMBF), grant “SOFIE, 01IS18012A”. The responsibility
for this article lies with the authors.

Fig. 1. Architecture of Teamscale

III. QUALITY CONTROL PROCESS

Code quality decays over time if it is not explicitly taken
care of [3]. TEAMSCALE supports the quality control process
suggested by Steidl et al. [12], which focuses on preserving
or improving the code quality of software systems.

Core element of the process are project-specific Quality
Goals which express how much technical debt is allowed for
a specific project:

1) Indifferent: No quality monitoring at all, i.e., no techni-
cal debt control

2) Preserving: No new findings—existing quality findings
are tolerated but new ones need to be addressed imme-
diately.

3) Improving: No findings in modified code. In the long
run, this reduces technical debt in the code base.

4) Perfective: No findings at all in the whole code base.

From our experience, depending on the project context (e.g.,
green-field vs. brown-field engineering, business criticality,
expected operation time), a more or less ambitious quality goal
should be chosen. For example, in a brown-field engineering
project with high business criticality over the next years, we
suggest to aim for the improving quality goal.

haas
Textfeld
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



TEAMSCALE is able to differentiate between new findings
and findings in modified code. Moreover, using baselines, it is
possible to focus on recent changes, e.g., since the last release.

The Quality Engineer of the project (which can be a
team member, a colleague from another team or an external)
regularly writes a report on the current system quality and
changes since the last report. As part of the manual analysis
of the quality engineer, he also inspects findings that should
have been addressed according to the quality goal. For those
that need to be addressed, he writes a quality task including
a suggestion for resolution. TEAMSCALE keeps track of the
findings associated with the task and the resolution status of
the task itself.

IV. STATIC AND DYNAMIC ANALYSES

TEAMSCALE provides static and dynamic code analysis for
26 programming languages. In the following, we provide a
short overview of the different analysis and how they can be
used to reduce technical debt.

A. Code Quality Analyses

a) Code Structure Metrics: Poorly structured code (i.e.,
long methods, deeply nested code, and long files) is hard to
read, understand, and thus, hard to maintain. Findings are
created for elements that violate the specified thresholds.

b) Code Duplication: TEAMSCALE uses an incremental,
index-based clone detection [8] to reveal code redundancies
caused by copy-paste programming. Code duplication is a
classic example for technical debt as it is very easy to copy-
paste code but increases maintenance efforts in the long run.

c) Comment Completeness: Public interfaces, classes
and methods should be documented so that developers quickly
get an idea of the implemented functionality, including all pre-
and postconditions. Missing or outdated comments cause mis-
understandings and wrong uses, which is why TEAMSCALE
creates findings for such cases.

d) Architecture Conformance: An up-to-date architec-
ture specification helps developers and managers to keep an
overview of their system, its single components and how they
are intended to interact with each other. In TEAMSCALE, it
is possible to specify architectures as hierarchically nested
components which are mapped to files or types [2]. Using
policies, architects define which components may interact with
each other. New dependencies are displayed in real-time and
findings are created for new, unmatched types, so that the
architect can easily update the architecture specification.

B. Test Gap Analysis

Non-tested, modified code is much more fault-prone than
code that was executed by tests [9]. Test Gap Analysis
identifies such test gaps (i.e., added or modified, but intested
methods) by combining information from static and dynamic
analysis [9]. TEAMSCALE can differentiate between different
coverage sources, e.g., unit test coverage from a continuous
integration pipeline and coverage from manual tests. Using the
results from test gap analysis, testers and managers can decide
on a factual basis whether further tests need to be executed.

Test gaps can be identified on ticket basis [11], as well. To
do so, TEAMSCALE links issues with code changes and test
execution information. This helps developers to see whether
their code changes for a specific ticket have been tested.

C. Usage Analysis
An example of a dynamic analysis in TEAMSCALE is usage

analysis [4]. TEAMSCALE helps to identify unused code and
to prepare its removal. We have seen software systems with
millions of lines of code in 28% of the implemented features
are not used [10]. Cleanups that remove unused code lower
technical debt of the software system as future maintenance
efforts will not be spent on unnecessary features anymore.

V. CONCLUSION

TEAMSCALE is a software intelligence platform, which
helps developers in their daily life to identify opportunities
to reduce existing and avoid additional technical debt. TEAM-
SCALE creates transparency towards managers on the actual
quality of their software systems and indicates what needs
to be addressed to improve code and process quality. In this
paper, we showed how to apply the quality control process
with the help of TEAMSCALE. Addressing findings from the
presented analyses will help to reduce technical debt in the
long run.

REFERENCES

[1] V. Bauer et al. “A Framework for Incremental Quality
Analysis of Large Software Systems”. In: ICSM. 2012.

[2] F. Deissenboeck et al. “Flexible Architecture Confor-
mance Assessment with ConQAT”. In: ICSE. 2010.

[3] S. G. Eick et al. “Does code decay? Assessing the
evidence from change management data”. In: TSE 27.1
(2001).

[4] A. Goeb. How much of your code do you actually use?
Blog. http://cqse.eu/blog-code-usage.

[5] N. Goede. “Quality Control in Action”. In:
Softwaretechnik-Trends 35.2 (2015).

[6] A. Hassan and T. Xie. “Software Intelligence: The
Future of Mining Software Engineering Data”. In:
Workshop on Future of SE Research. 2010.

[7] L. Heinemann, B. Hummel, and D. Steidl. “Teamscale:
Software Quality Control in Real-Time”. In: ICSE.
2014.

[8] B. Hummel, E. Juergens, and D. Steidl. “Index-based
model clone detection”. In: International Workshop on
Software Clones. 2011.

[9] E. Juergens and D. Pagano. “Haben wir das Richtige
getestet? Erfahrungen mit Test-Gap-Analyse in der
Praxis”. In: Software-QS-Tag. 2016.

[10] E. Juergens et al. “Feature Profiling for Evolving Sys-
tems”. In: ICPC. 2011.

[11] J. Rott et al. “Ticket Coverage: Putting Test Coverage
into Context”. In: Workshop on Emerging Trends in
Software Metrics. 2017.

[12] D. Steidl et al. “Continuous Software Quality Control
in Practice”. In: ICSME. 2014.




