
Poster: Recommending Unnecessary Source Code
Based on Static Analysis

Roman Haas
CQSE GmbH

Munich, Germany

Rainer Niedermayr
University of Stuttgart, CQSE GmbH

Stuttgart, Germany

Tobias Röhm
CQSE GmbH

Munich, Germany

Sven Apel
Universität Passau
Passau, Germany

Abstract—Grown software systems often contain code that
is not necessary anymore. Unnecessary code wastes resources
during development and maintenance, for example, when prepar-
ing code for migration or certification. Running a profiler may
reveal code that is not used in production, but it is often time-
consuming to obtain representative data this way. We investigate
to what extent a static analysis approach which is based on code
stability and code centrality, is able to identify unnecessary code
and whether its recommendations are relevant in practice. To
study the feasibility and usefulness of our static approach, we
conducted a study involving 14 open-source and closed-source
software systems. As there is no perfect oracle for unnecessary
code, we compared recommendations of our approach with
historical cleanup actions, runtime usage data, and feedback
from 25 developers of 5 software projects. Our study shows
that recommendations generated from stability and centrality
information point to unnecessary code. Our results suggest that
static analysis can provide quick feedback on unnecessary code
that is useful in practice.

I. INTRODUCTION

Unnecessary code is code in which no stakeholder has an
interest. It is almost a rule that unnecessary code appears over
time, no matter whether a traditional or agile development
approach is used [1]–[3]. Unnecessary code is caused by:

1) reimplementations for which the initial implementation
is still available

2) changes in stakeholders’ interests leading to feature
implementations that are no longer used by any user

As an example, Eder et al. found in a study on industrial
business applications that about one quarter of the imple-
mented features was not used by any user within two years [4].

Unnecessary code wastes resources. In particular, it be-
comes cost-intensive if the whole code base needs to be
modified, for example, during a migration to a new technology.
In daily development work, it wastes computing resources
during compiling and testing it, which slows down feedback
from continuous integration pipelines to developers. Moreover,
from a management perspective, maintenance efforts should
not be invested into unnecessary code.

We investigate a light-weight approach to identify unnec-
essary code statically based on the hypothesis that the most
stable and, at the same time, least central code in the depen-
dency structure of the software is likely to be unnecessary. For
this purpose, we implemented an analysis that uses stability
and centrality measures to recommend files as unnecessary
code.

Identification of unnecessary code is a difficult problem. So,
to validate whether recommendations of our static analysis ap-
proach represent unnecessary code, we employ three different
oracles. (1) We compare code recommended as unnecessary
with code that has been removed in historical cleanup com-
mits. (2) We check whether code recommended as unnecessary
was not used in production environments. (3) 25 developers
reviewed recommendations of unnecessary code in a series of
interviews.

II. A STATIC ANALYSIS APPROACH

We aim at identifying code that became unnecessary over
time because reimplementations happened or stakeholder in-
terests have changed. This may well lead to code that is not
changed anymore, that is, stable code. Of course, there are
other cases of stable code, for example, core concepts and
features. Therefore, it is not sufficient to consider only code
changes to identify unnecessary code. This is why we take
also centrality of code in the dependency structure of the
system into account: central features and concepts are often
necessary and can be identified statically [5], [6]. However,
less central code that has not been changed for a while, might
be unnecessary. So, our hypothesis is that stable and decentral
code is likely unnecessary.

III. STUDY

We have implemented our approach as a recommender
system that suggests 10 files or packages as unnecessary code
and evaluated it on 14 open-source and closed-source software
systems. The overarching question of our study is whether our
approach is able to make practically relevant recommendations
for unnecessary code.

A. Research Questions

RQ 1: Do code stability and code decentrality identify
unnecessary code? Our static analysis approach identifies
unnecessary code based on code stability and code decen-
trality. We investigate the accuracy of recommendations of
our approach by comparing them to historical cleanups, usage
data, and feedback from a series of developer interviews.

RQ 2: Do developers delete code recommended as un-
necessary? If developers follow our suggestion and delete
recommended code, this underlines the usefulness of our
approach.

haas
Textfeld
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

TABLE I
RQ 1: EVALUATION OF RECOMMENDATIONS FOR POTENTIALLY

UNNECESSARY FILES USING USAGE DATA ORACLE

Non-executed
Execution Recommended Recommended

Project Rate (e) Files Files

SYSTEM 1 42% 734 734 (100%)
SYSTEM 2 46% 284 284 (100%)
TEAMSCALE 40% 33 21 (64%)

Total 1,051 1,039 (99%)

B. Study Results

In this section, we report the results for the research
questions.

RQ 1. Identification of Unnecessary Code: For simplicity,
we separate the results for the three oracles.

Results with cleanups as oracle. In total, we investigate
418 files that were deleted in cleanups. 30.9% of these files
were classified as potentially unnecessary by our analysis
implementation, but only 5.5% of the deleted files were
recommended as unnecessary.

Results with usage data as oracle. Next, we compare
recommendations with runtime usage data obtained from three
of our study subjects. Table I presents the execution proportion
of files and how many files were recommended as unnecessary
code. The table contains also the number of recommended and
non-executed files (which are, from usage perspective, indeed
unnecessary). For the first two study subjects, none of the
recommended files were executed, which is a perfect result.
The recommendations for the study subject TEAMSCALE
contained 12 files (36%) that deemed unnecessary but were
executed and are therefore very likely necessary.

A χ2 test on our approach and a random recommendation
system with an expected hit rate of 1 − e shows that our
approach significantly outperforms a random selecting system
(p < 0.001). The odds ratio for these two subjects is 0.001,
respectively 0.002, which implies a very large effect size. For
TEAMSCALE, our approach cannot outperform such a random
selection (p > 0.05).

Results with developer interviews as oracle. The feedback
from developers on recommendations for potentially unnec-
essary code in their code base was overall positive and is
summarized in Figure 1. In total, 50 recommendations were
evaluated by developers. 17 of the recommended code chunks
contained classes that were considered as unnecessary by the
respective developers. That is, 34% of our recommendations
pointed to unnecessary code.

RQ 2. Deletions of Unnecessary Code by Developers: De-
velopers considered recommendations indeed as unnecessary
code and deleted 20% of them shortly after our interview.
So, developers benefit from the recommendations and actually
delete unnecessary code.

BIS 1
ELASTICSEARCH

JENKINS
MOCKITO

TEAMSCALE
0

5

10

#
R

ec
om

m
en

d.

I don’t know this code
Recommended files are needed now and in the future
Recommended files may be unnecessary in the future
Parts may be unnecessary but I am not sure
Some recommended files are unnecessary
All recommended files are unnecessary

Fig. 1. Developer feedback on recommendations

IV. CONCLUSION

Unnecessary code wastes resources in many ways and can
cause superfluous costs (e.g., when certifying or migrating
code). Dynamic analysis can be used to identify unnecessary
code, which often comes at the cost of recording representative
usage data. In this paper, we evaluated to what extent a
simpler and cheaper static analysis approach is able to identify
unnecessary code. The key hypothesis is that stable and
decentral code is likely unnecessary.

Our evaluation has shown that our recommendations refer
to unused code in 64%–100% of all cases. The developer
interviews revealed that 34% of recommendations pointed to
unnecessary code that was even still reachable and therefore
would not have been spotted by, for example, a dead code
detector. Developers found the recommendations useful and
deleted 20% of recommended code from their code base.
So, while being not perfect—as to be expected—a static
analysis approach can provide quick feedback on potentially
unnecessary code and is useful in practice.

ACKNOWLEDGMENT

This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant “SOFIE,
01IS18012A”. The responsibility for this article lies with the
authors.

REFERENCES

[1] M. M. Lehman and L. A. Belady, Eds., Program evolution: Processes of
software change. Academic Press Professional, 1985.

[2] D. L. Parnas, “Software aging,” in Proceedings of the International
Conference on Software Engineering. IEEE/ACM, 1994, pp. 279–287.

[3] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta, “How changes affect
software entropy: An empirical study,” Empirical Software Engineering,
vol. 19, no. 1, pp. 1–38, 2014.

[4] S. Eder, M. Junker, E. Juergens, B. Hauptmann, R. Vaas, and K. H.
Prommer, “How much does unused code matter for maintenance?” in
Proceedings of the International Conference on Software Engineering.
IEEE/ACM, 2012, pp. 1102–1111.

[5] D. Steidl, B. Hummel, and E. Juergens, “Using network analysis for
recommendation of central software classes,” in Proceedings of the
Working Conference on Reverse Engineering. IEEE, 2012, pp. 93–102.

[6] I. Şora, “A PageRank based recommender system for identifying key
classes in software systems,” in Proceedings of the International Sym-
posium on Applied Computational Intelligence and Informatics. IEEE,
2015, pp. 495–500.

	Introduction
	A Static Analysis Approach
	Study
	Research Questions
	Study Results

	Conclusion
	References

