Investigating Next Steps in Static API-Misuse Detection

Sven Amann∗ Hoan Anh Nguyen† Sarah Nadi‡ Tien N. Nguyen§ Mira Mezini¶
∗CQSE GmbH †Amazon.com, Inc ‡University of Alberta §University of Texas-Dallas ¶Technische Universität Darmstadt
research@sven-amann.de hoanamzn@amazon.com nadi@ualberta.ca tien.n.nguyen@utdallas.edu mezini@cs.tu-darmstadt.de

Abstract—Application Programming Interfaces (APIs) often impose constraints such as call order or preconditions. API misuses, i.e., usages violating these constraints, may cause software crashes, data-loss, and vulnerabilities. Researchers developed several approaches to detect API misuses, typically still resulting in low recall and precision. In this work, we investigate ways to improve API-misuse detection. We design **MUDETECT**, an API-misuse detector that builds on the strengths of existing detectors and tries to mitigate their weaknesses. **MUDETECT** employs a new graph representation of API usages that captures different types of API misuses and a systematically designed ranking strategy that effectively improves precision. Evaluation shows that **MUDETECT** identifies real-world API misuses with twice the recall of previous detectors and 2.5x higher precision. It even achieves almost 4x higher precision and recall, when mining patterns across projects, rather than from only the target project.

I. INTRODUCTION

Incorrect usages of an Application Programming Interface (API), or **API misuses**, are violations of (implicit) usage constraints of the API. An example of a usage constraint is having to check that hasNext() returns true before calling next() on an Iterator, in order to avoid a NoSuchElementException at runtime. API misuse is a prevalent cause of software bugs, crashes, and vulnerabilities [1]–[7].

To mitigate API misuse, researchers have proposed several API-misuse detectors [1], [8]–[17]. These detectors analyze API usages, i.e., code snippets that use a given API. The detectors commonly mine usage patterns, i.e., equivalent API usages that occur frequently, and then report deviations from these patterns as potential misuses. Unfortunately, the reported precision of such detectors is typically low and a recent study [18] showed that their recall is also very low. Thus, we need better detectors to address the still-prevalent problem of API misuse [19], [20].

Previous work identified individual as well as common strengths and weaknesses of existing detectors [18] in an empirical study using the open-source benchmark **MUBENCH** [21]. In this paper, we investigate whether addressing the reported weaknesses indeed leads to better performance in practice. Therefore, we design a new misuse detector, **MUDETECT**. **MUDETECT** encodes API usages as API-Usage Graphs (AUGs), a comprehensive usage representation that captures different types of API misuses. **MUDETECT** employs a greedy, frequent-subgraph-mining algorithm to mine patterns and a specialized graph-matching strategy to identify pattern violations. Both components consider code semantics to improve the overall detection capabilities. On top, **MUDETECT** uses an empirically optimized ranking strategy to effectively rank true positives. While previous detectors mostly target a per-project setting [18], **MUDETECT** also works in a cross-project setting, where it mines thousands of usage examples from third-party projects.

We assess the precision and recall of **MUDETECT** and show that it outperforms the four state-of-the-art detectors evaluated in prior work [18]. In our evaluation, we extended **MUBENCH** by 107 real-world misuses identified in a recent study on run-time verification [19]—more than doubling its size—to ensure that our design decisions generalize. We show that, in a setting with perfect training data, **MUDETECT** achieves a recall of 72.5%, which is 20.3% higher than the next best detector and over 50% higher than the other detectors. In the typical per-project setting, **MUDETECT** achieves recall of 20.9%, which is 10.2% better than the second-best detector, and precision of 21.9%, which is 13.1% better than the second-best detector. In a cross-project setting, **MUDETECT**’s recall and precision again improve significantly to 42.2% and 33.0%, respectively. Throughout the experiments, **MUDETECT** identified 27 previously unknown misuses, which we reported in eight pull requests (PRs). To date, three of the PRs got accepted, demonstrating that **MUDETECT** identifies actual issues in current software projects.

To summarize, this paper makes the following contributions:

- **AUG**, a graph-based representation of API usages that captures all usage properties relevant for identifying misuses.
- Code-semantic-aware, greedy frequent-subgraph-mining and graph-matching algorithms to identify patterns within and across projects and (violating) instances in a target codebase.
- **MUDETECT**, a (cross-project) misuse detector.
- An empirical study of ranking strategies to improve precision.
- An empirical evaluation that compares **MUDETECT** to existing detectors, and includes an analysis of the results to identify further opportunities for improvement.
- Fixes for all previously unknown misuses identified by **MUDETECT**, for external validation of the findings’ relevance.

We publish our **MUBENCH** extension, **MUDETECT**’s implementation, and all experiment data, tooling, and results [22].

II. STATE OF THE ART AND IMPROVEMENT STRATEGIES

Our work focuses on static API-misuse detection in Java. In the following, we first briefly introduce the state-of-the-art detectors that were empirically evaluated by Amann et al. [18]. Subsequently, we summarize the problems that their study revealed with these detectors and outline how we mitigate them. The detectors work as follows.
GROUMiner [12] represents usages as directed acyclic graphs that encode method calls, field accesses, and control structures as nodes and control-data-flow dependencies among them as unlabelled edges. GROUMiner uses sub-graph mining to find patterns and then detects violations of these patterns as missing nodes. It detects missing method calls and misplaced method calls, as well as missing control structures.

JADET [10] encodes the transitive closure of the call-order relation in each usage as pairs of the form \(m() \prec n() \). It uses Formal Concept Analysis [23] to identify violations, i.e., rarely missing pairs. It cannot detect violations of patterns with only one pair. Tikanga [16] builds on the same algorithm, but encodes usages using temporal properties (CTL). Both detectors detect missing and misplaced calls.

DMMC [1] encodes usages as sets of methods called on the same receiver type. It identifies violations by computing, for every usage, the ratio of the number of equal usages and usages with one additional call. Intuitively, a violation should have few exactly-similar usages, but many almost-similar usages.

The problems that Amann et al. [18] identified as the root causes for the low recall and precision of these detectors as well as our strategies to mitigate them are as follows.

P1: Representation. On average, 45.8% of false negatives were due to the inability of the detectors’ underlying representations to capture details necessary for differentiating misuses from correct usages [18]. For example, DMMC and GROUMiner encode methods by their names only and, hence, cannot detect a missing method call when an overloaded version of the method is called (e.g., the misuse calls `String.getBytes()` while the pattern requires `String.getBytes(String)`). Our representation tracks method-call arguments. Additionally, for the first time, we provide a representation that combines tracking of control flow, exceptional flow, order of method calls, synchronization, and data flow. Previous detectors considered these features in isolation.

P2: Matching. On average, 31.3% of false negatives were due to detectors not matching patterns to misuses [18]. For example, to identify that two methods are called in the wrong order, say \(b(); a() \) instead of \(a(); b() \), a detector needs to both capture the call order, and match the pattern and misuse despite the different order. Similarly, a detector needs to consider sub-typing information to match a `Collections.size()` call found in a pattern to an `ArrayList.size()` call found in a usage. Another issue is that some detectors use a distance threshold to filter their findings, which may filter true positives, e.g., if a misuse contains additional, optional method calls. MuDetect matches calls even if their order differs, considers type-hierarchy information, and does not employ a distance threshold, but rather enforces a ranking strategy.

P3: Uncommon Usages. On average, 34.3% of the false positives were uncommon-but-correct usages [18]. It is generally difficult, if not impossible, to automatically and precisely distinguish uncommon usages from misuses. However, the study observed that many of the false positives for uncommon usages involved methods without side effects, pure methods, such as getters. Since invocations of pure methods cannot be required, unless their return value is actually needed, MuDetect removes calls to pure methods from patterns, unless their return value is used in the pattern.

P4: Alternative Patterns. On average, 19% of false positives were usages that violate some particular pattern, but conformed to another (alternative) pattern [18]. Such alternative-pattern instances may even accumulate to 28% of the false positives [15]. Therefore, MuDetect filters alternative-pattern instances.

P5: Self- and Cross-method Usages. On average, 12.2% of false positives were due to detectors not distinguishing self- and cross-method usages [18]. In a self usage, a class uses part of its own API in its implementation, e.g., `Collections.addAll()` calls `Collection.add()`. Constraints that client usages must adhere to, e.g., guarding calls by checks, may not apply to self usages. In a cross-method usage, an object is used by multiple methods, e.g., by storing it in a field. From the perspective of an individual method, we have only a partial view on the entire usage scattered across methods. For both types of usages, an intra-procedural analysis potentially detects partial usages, i.e., violations, that are not actual misuses. Therefore, MuDetect ignores self-usages and usages on fields.

P6: Ranking. Often, the detectors correctly identified misuses, but ranked them extremely low [18]. An effective ranking mechanism that pushes true positives to the top is essential for saving developers’ efforts. We empirically investigate several ranking factors from the literature and compose a ranking strategy that effectively prefers true positives.

P7: Usage Examples. A possible cause of the detectors’ low recall is a lack of correct usages in their training projects [18]. To validate this hypothesis, we evaluate MuDetect in both a per-project setting, which is the norm in the literature, and a cross-project setting that provides more training examples.

III. MuDetect

We design a new API-misuse detector, MuDetect, that adopts the strengths of previous detectors and addresses the problems summarized in Section II as follows:

1. We design API-Usage Graphs (AUGs), a representation of API usages that simultaneously captures many properties that can distinguish misuses from correct usages.
2. We design a new pattern-mining algorithm, based on frequent-subgraph mining, that exploits domain knowledge about API usages to efficiently identify usage patterns.
3. We design a new detection algorithm, which uses domain knowledge to efficiently identify API-usage violations.
4. We design a ranking strategy that effectively ranks true positives before false positives.

A. API-Usage Graphs

Amann et al. [18] found the graph-based GROUM representation of usages to be most promising for identifying misuses. However, GROUMs still capture insufficient details (P1 (Representation)), which is why we propose API-Usage Graphs (AUGs) as a new representation of API usages. An
AUG is a directed, connected multigraph with labelled nodes and edges. Nodes represent data entities, such as variables, and actions, such as method calls; edges represent control and data flow between entities and actions represented by nodes. Figure 1 shows an example. MUDetect’s intra-procedural analysis creates one AUG from each source method.

1) Usage Actions: We use action nodes to represent method calls, operators, and instructions in API usages (boxes in Figure 1). For method calls, we use labels T.M(), where M is the method’s name and T is the simple name of its declaring type. For constructor calls, we use labels of the form T.<init>. Using the declaring type abstracts over different static receiver types (P2 (Matching)): e.g., all calls to size() on a List, LinkedList, or ArrayList are labelled Collection.size().

We encode equality and relational operators to capture conditions such as list.size()>0. To abstract over alternative ways to express a condition, e.g., l.size()!=0 and !(!l.size()==0), we use the label <rel> for all equality and relational operators and drop negation operators. To also abstract over alternative ways to compose conditions, e.g., a&&b and (!(a||!b)), we drop the conditional operators && and ||. With this abstraction level, we focus on detecting the absence or presence of conditions in API usages, rather than logical mistakes in conditions. We capture null checks, e.g., the null check on file in Figure 1, by action nodes with the dedicated label <nullcheck> to distinguish this special condition from other comparisons. We encode unconditional control instructions, such as return, throw, and catch, by action nodes with dedicated labels, e.g., the <catch> and <return> nodes in Figure 1.

To reduce false positives due to P5 (Self- and Cross-method Usages), we heuristically exclude self- and cross-method usages from AUGs: We create no nodes for method calls on this and super as well as on field accesses on both these qualifiers.

2) Data Entities: We use data nodes to represent objects, values, and literals that appear in API usages (ovals in Figure 1). We encode data entities as nodes to make data dependencies between actions, such as multiple calls on the same object, explicit, to ensure we have a connected subgraph with all data-dependent parts of a usage, and to distinguish overloaded versions of methods by their parameter entities. We uniformly create data nodes for variables, fields, and objects that are not assigned but immediately used, e.g., in a method-call chain.

Since certain types, such as List, ArrayList, and LinkedList, appear almost interchangeably in API usages, we label all data nodes <Object>. This allows us to abstract over different static types (P2 (Matching)), while checking the data-/control-flow that the data entities take part in. Note that Figure 1 shows the simple type names for better readability.

3) Control Flow and Data Flow: We use edges to represent control flow and data flow. We distinguish eight types of edges and label them with their type. Figure 1 shows seven of these edge types, labelled with acronyms for brevity.

- A receiver edge connects from a data node to a method call that is invoked on the respective object.
- A parameter edge connects from a data node to an action that takes the respective object or value as a parameter.
- A definition edge connects from an action that creates or returns a value or object to the respective data node.
- An order edge connects, in order of execution, two action nodes operating on the same data entity (receiver or parameter). Since we want MUDetect to discover wrong method-call order, we over-approximate temporal relations by building the transitive closure over order edges. To keep AUGs acyclic, we exclude backwards edges from loops.

- A condition edge connects an action whose result controls branching to an action controlled by that branching.
- A synchronize edge connects a data node that the program obtains a lock on to an action executed under that lock.
- A throw edge connects an action that may throw an exception to a data node representing that exception object. We use the throws information, if it is resolvable, to determine which exception may be thrown by an action. We connect exception data nodes to respective <catch> nodes with parameter edges.
- A handle edge connects from a <catch> node to an action in a respective exception handling block.

This detailed dependency information helps distinguish misuses from correct usages (P1 (Representation)), relate usages despite notational differences (P2 (Matching)), and consider code semantics in both pattern mining and violation detection.

B. Pattern Mining

Listing 1 shows our pattern-mining algorithm, which takes a set A of AUGs, a frequency measure f and a frequency threshold σ, and produces a set of patterns. A pattern is a sub-AUG that occurs frequently in A, and a pattern instance is an occurrence. A sub-AUG p is a pattern if it has \(f(p) \geq \sigma \) instances. The algorithm follows three key ideas:

1) Apriori-based Mining: The algorithm follows the general idea of an apriori-based algorithm for frequent-subgraph mining [24], i.e., it mines patterns by starting from all single-method-call patterns (Line 2) and recursively extending them to larger patterns (Line 3). The key idea here is that if a graph occurs frequently, all of its subgraphs also occur frequently. To extend a pattern p of size k, the algorithm generates all suitable
A data node is suitable only if it has an outgoing edge to whose name starts with get.

To reduce the complexity of graph isomorphism detection, the algorithm uses a heuristic that combines graph vectorization and hashing. The labels of a sequence of nodes and edges along a path in the graph. Two graphs are isomorphic if their corresponding feature vectors have the same hash value. The algorithm then filters out all candidates that it found before (Line 10). If there are no further frequent extensions of p, i.e., p is inextensible, the pattern is added to the set of final patterns P (Line 14).

If any unexplored candidate remains (Line 11), the algorithm selects the most-frequent one (Line 12) and recursively searches for larger patterns (Line 13). This greedy strategy avoids the combinatorial explosion problem of exhaustive search with backtracking and makes our mining scale to a large number of large graphs, unlike GROUMiner, which often timed out [18].

In addition to the possible extensions, the algorithm also keeps track of those instances that do not have any frequent extension (Line 15). If these inextensible pattern instances are themselves frequent, it adds this pattern to P (Line 16). The intuition is that an API might have a core pattern and additional alternative patterns that contain it (P_4 (Alternative Patterns)).

Listing 1: MuDetect’s Pattern-Mining Algorithm

```
1 def mine(A: Set[AUG], f: Pattern → int, σ: int)
2 $P_0 = \{ p \mid p \in \text{single_call_patterns}(A) \land f(p) \geq σ \}$, $P = \emptyset$
3 for $p$ in $P_0$: extend($p$, $P$, $f$, $σ$)
4 return $P$
5
6 def extend($p$: Pattern, $P$: Set[Pattern], $f$: Pattern → int, $σ$: int)
7 $E = \{ e \mid e \in p \land e \in \text{generate_extensions}(i) \}$
8 $PC = \{ e \mid (e \in \text{isomorphic_clusters}(E)) \land f(e) \geq σ \}$
9 $UC = PC \setminus P$
10 if $UC = \emptyset$
11 $c = \text{most_frequent}(UC)$
12 extend($c$, $P$, $σ$)
13 else: $P = P \cup \{ p \}$
14 ip = $\{ i \mid i \in p \land \forall e \in PC. \text{generate_extensions}(i) \cap c = \emptyset \}$
15 if $f(ip) \geq σ$: $P = P \cup \{ ip \}$
16
17 def generate_extensions($i$: Instance)
18 extensions = $\emptyset$
19 for $n$ in adjacent_nodes($i$):
20 if has_non-order_connection($n$, $i$) and
21 is_non-pure_call($n$) or (is_pure_call($n$) and has_inout_connection($n$, $i$))
22 or (is_operator($n$) and has_inout_connection($n$, $i$))
23 or (is_data($n$) and has_out_connection($n$, $i$)):
24 $PC = \text{generate_extensions}(i) \cap c = \emptyset$
25 $P = P \cup \{ p \}$
26 $c = \text{most_frequent}(UC)$
27 return $P$

Listing 2 shows our detection algorithm. It takes a set $T$ of target AUGs, a set $P$ of patterns, and a ranking function $r$ and produces a list of violations. A violation is a strict subgraph of a pattern. The algorithm consists of four major steps:

1) Graph Matching: The detection algorithm first checks each pair of a target and a pattern for common subgraphs (Line 6). To identify the subgraphs, the algorithm follows the general idea of the pattern-growth approach for frequent-subgraph mining [24], i.e., it discovers the largest common subgraphs of each pair of a pattern and a target (Line 6), by starting from all common method-call nodes (Line 16) and recursively extending the common subgraph (Line 17), one adjacent edge at a time. This allows us to find even single missing edges, e.g., wrong order of two method calls.

When searching for possible mappings of a pattern AUG onto a target AUG, the detection algorithm follows a greedy extension strategy. It continuously selects the next-best pattern edge, while exploring all alternative mappings to the target. This avoids the combinatorial explosion problem of an exhaustive search with backtracking. The algorithm explores all alternatives in the target, as opposed to in the pattern, because targets are usually larger and, therefore, likely contain more alternatives. This results in higher precision.

When exploring candidates, there may be multiple equivalent candidate extension edges. Two edges are equivalent if they have the same type, both their source and target nodes have the same label, respectively, and mapping them onto each other is consistent with the current mapping between target and pattern nodes. The node mapping is consistent if every node from the target is mapped to at most one node from the pattern and vice versa. Intuitively, the more equivalent edges, the more alternative mappings exist and the more likely it is to select a non-optimal mapping. To decrease this likelihood, the algorithm counts equivalent edges in the target and the pattern (Line 26) and gives priority to edges with fewer equivalent alternatives.

C. Violation Detection

3) Greedy Exploration: To identify $(k+1)$-patterns in the set of all extensions of the instances of $p$, the algorithm clusters isomorphic extensions to pattern candidates (Line 9). To reduce the complexity of graph isomorphism detection, the algorithm uses a heuristic that combines graph vectorization and hashing [25]. More specifically, a graph is represented as a vector of features, each of which is extracted from the
Listing 2: MuDETECT’S Detection Algorithm
Mapping these first eliminates equivalent alternatives that are inconsistent with the extended node mapping.

2) Alternative-Pattern Instances: There may be alternative ways to use an API, e.g., before fetching an item from a Set, we may either check that it is not empty or that it has a size().
If we have patterns for both cases, these overlap, since fetching an item requires the same calls in both cases. Consequently, an instance of one of the patterns violates the other pattern (P4 (Alternative Patterns)), because the instance shares elements with both patterns and either misses the size or the emptiness check.
Following this insight, our detection algorithm sorts each common subgraph of a target and a pattern into one of two categories: pattern instances, i.e., subgraphs equal to the pattern (Line 7), and violations, i.e., strict subgraphs of the pattern (Line 9). Once all targets and patterns are processed, it uses the set of instances to filter out violations that are subgraphs of instances of another pattern (Line 11).

3) Violation Ranking: After identifying all violations in the target code base, the detection algorithm ranks the findings (Line 12). Section III-D discusses ranking strategies in detail.

4) Alternative Violations: If a usage violates all alternative patterns, the filtering for alternative-pattern instances (Section III-C2) leaves all respective violations in place. To avoid such duplicates, we filter violations involving a method call that is also part of a violation at a higher rank (Line 13).

D. Ranking

Ranking the detected violations is crucial for MuDETECT’s precision, since it controls how many true positives appear among the top findings (P6 (Ranking)). The ranking may also impact MuDETECT’s recall, since we filter alternative violations based on the ranking order of the findings (see Section III-C4), which may eliminate true positives. To design MuDETECT’s ranking strategy, we first survey existing ranking strategies and discuss their individual factors. Then, we compose new ranking strategies from these factors.

a) Previous Ranking Strategies: Some detectors use a maximal distance between a pattern and a usage to classify the usage as a violation [10], [12], [16], where distance is the number of facts from the pattern that the usage misses.
Facts might be method calls, order relations between call pairs, or nodes and edges, depending on the usage representation.
Intuitively, usages that are distant from a pattern P are more likely occurrences of an alternative pattern than violations of P. We compute the distance between a pattern and a usage AUG via the number of nodes and edges nm that the usage misses from the pattern. We normalize nm by the total number of elements np of the pattern. Since a missing node always implies that all edges connecting to it are also missing, we take the number of missing edges from/to missing nodes ns out of the equation. This leads to our violation-overlap measure

\( v_o = (n_m - n_s)/(n_p - n_e) \)

Some detectors rank their findings by the support of the violated patterns (ps) [8], [14], [15]. Intuitively, \( p_s \) expresses the miner’s certainty regarding the correctness of the pattern.

Monperrus et al. [1] rank their findings by the confidence, combining \( p_s \) and the number of violations of the pattern (pv) into \( p_s/(p_s + p_v) \). Intuitively, patterns with more violations more likely contain usage properties that are not mandatory, making their violations more likely to be false positives.
Some detectors [8], [12] rank their findings by their rareness, combining \( p_s \) and the number of times the violation reoccurs, i.e., the violation support (vs), into \( (p_s - v_s)/p_s \). Intuitively, a violation that occurs more often is less likely to be problematic.

Wasylikowski et al. [10] rank findings by a defect indicator, combining \( p_s \), vs, and a pattern-uniqueness factor (pv), into \( p_s \times p_v/v_s \). To compute \( p_v \), they count for every API in the pattern the number of violations involving that API and take the inverse of the largest such number. Intuitively, if an API is involved in more violations, any particular violation involving it is less likely to be problematic.

b) MuDETECT’s Ranking Strategy: As candidates for our ranking strategy, we consider the strategies from the literature and all combinations of the individual ranking factors by multiplication. For the latter, we use \( p_s \), \( p_v \), and \( v_s \) as is, but invert \( p_v \) and \( v_s \), such that smaller values imply lower probability of the violation being problematic. We multiply them, such that, if any of the factors is low, the overall ranking weight is low. Since it is unclear which candidate is most useful, we empirically evaluate them. We explain the respective experiment in Section IV-B and its results in Section V-A.

E. Per-project and Cross-project Settings

As Sections III-B and III-C show, MuDETECT separates pattern mining and detection, which allows us to run it in two different settings. The first is a per-project setting, where we configure MuDETECT to use the AUGs from its target project as the input for both pattern mining and violation detection. This enables a fair comparison to existing detectors, which combine
mining and detection in a single phase [18] and, thus, always mine and detect on the same input. In this setting, we follow existing work [8], [10], [12], [16] and define the frequency measure \( f(p) \) as the number of distinct instances of the pattern.

The second is a cross-project setting, where we configure MUDTECT to use the AUs from its target project as the input for violation detection and AUs from other projects as input for pattern mining. This allows us to provide additional usage examples for mining (\( P^7 \) (Usage Examples)). We call this configuration MUDTECTXP. In this setting, we define the frequency measure \( f(p) \) as the number of projects from which at least one instance of the pattern originates. The intuition is that a pattern that occurs in more projects is a generally reusable pattern and, therefore, more likely to be correct than a pattern that occurs only in a single project (a project-specific pattern), even if it occurs frequently within that project.

IV. EVALUATION SETUP

We now present the setup that we use to compare MUDTECT’s precision and recall to existing detectors. We aim to understand the effectiveness of our mitigation strategies and the impact of the ranking strategies discussed in Section III-D.

A. Detectors and Dataset

We compare MUDTECT against the four detectors JADET, GROUMINER, TIKANGA, and DMMC, which were empirically evaluated by Amann et al. [18]. As the ground-truth for the experiments, they used MUBENCH [7], a dataset of open source projects with 84 known API misuses (Table I, Row 1). For 64 of these misuses, MUBENCH also contains examples of correct usages, which are derived from the fix of the misuse. Since we designed MUDTECT using insights from Amann et al.’s study, an evaluation only on MUBENCH may suffer from overfitting. Therefore, we extend the dataset by misuses identified in a recent study by Legunsen et al. [19]. They applied runtime verification of API specifications to 200 open-source projects and submitted 114 pull requests that fix API misuses identified in this process. From this set, we take all misuses for which the pull request was accepted as of August 8, 2017, which adds 107 new misuses from 30 projects to our experiments (Table I, Row 2). Following the structure of MUBENCH, we derive examples of correct usage from the accepted pull requests.

Overall, this gives us a benchmark dataset with 191 API misuses from real-world projects (Table I, Row 3). We use this dataset in our experiments. For simplicity, we refer to this extended dataset as MUBENCH throughout the rest of the paper.

B. Experimental Setup

To evaluate MUDTECT, we conduct the three per-project experiments proposed by Amann et al. [18]: Experiment P to measure precision, Experiment RUB to determine recall upper bound, and Experiment R to measure actual recall. We also

\[ \text{Table I: MUBENCH: Number of Misuses (#MU) and Number of Misuses with Corresponding Correct Usages (#CU).} \]

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#MU</th>
<th>#CU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original MUBENCH</td>
<td>84</td>
<td>64</td>
</tr>
<tr>
<td>MUDTECT Extension</td>
<td>107</td>
<td>107</td>
</tr>
</tbody>
</table>

\[ \text{Table II: Experiment RNK: Number of Hits (#H), Average Hit Rank (AHR), and Number of Hits in the Top-20 (@20).} \]

<table>
<thead>
<tr>
<th># Strategy</th>
<th>@20</th>
<th>H</th>
<th>AHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ( p_5/v_5 \times v_5 )</td>
<td>19</td>
<td>34</td>
<td>91.6</td>
</tr>
<tr>
<td>2. ( p_5/v_5 \times v_5 )</td>
<td>17</td>
<td>34</td>
<td>91.8</td>
</tr>
<tr>
<td>3. ( p_5/v_5 \times v_5 )</td>
<td>16</td>
<td>34</td>
<td>90.1</td>
</tr>
<tr>
<td>4. Rarity</td>
<td>16</td>
<td>33</td>
<td>94.3</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ \text{For the other detectors, we use their best configurations from the respective publications.} \]

We execute the experiments using MUBENCHPIPE [18], a public automated benchmarking pipeline built on top of MUBENCH. MUBENCHPIPE facilitates preparing the target projects from MUBENCH, executing the detectors, and collecting result statistics after we manually reviewed the detectors’ findings. In all our experiments, two authors first independently reviewed each detector finding and then discussed any disagreements until a consensus was reached about whether the finding correctly identifies a misuse. We report Cohen’s Kappa score as a measure of the reviewers’ initial agreement. We now introduce these five experiments in detail.

Experiment P. The goal of Experiment P is to measure the detectors’ precision. We run the detectors on all projects from MUBENCH, letting them mine patterns and detect violations on a per-project basis. Since some detectors report several hundreds of findings, reviewing all findings of all detectors on all projects is practically infeasible. Therefore, we sample ten projects and review the top-20 findings per detector on each of them, as determined by the detectors’ own ranking strategies. In this sample, we include the five projects Amann et al. [18] used in their precision experiment. In addition, we choose another five of the new projects we added to MUBENCH. To this end, we compute the average normalized number of findings (ANNF) across detectors for each project. The ANNF for a given detector for a given project is the number of findings the detector has on that project divided by the maximum number of findings the detector has on any project. We select two projects with the highest ANNF, two projects with the lowest ANNF, and one random project from the mid range. For fairness, we exclude projects where one of the detectors failed or where two or more detectors did not report any findings. We could not exclude all projects where one of the detectors did not report any findings, because this left us with fewer than five projects to choose from.

Experiment RUB. The goal of Experiment RUB is to assess
detectors’ recall upper bound, given perfect training data. This separates conceptual limitations from the effect of insufficient training data. Since we need to provide a correct usage as input training data, we limit this experiment to the 171 misuses in MuBench that have corresponding correct usages (see Table I). We run the detectors once for each of these misuses, providing them with enough copies of the corresponding correct usage for pattern mining. This ensures that detectors always find sufficient evidence to mine the pattern required to identify the misuse. We review all potential hits, i.e., all detector findings in the same method as the known misuse.

**Experiment R.** The goal of Experiment R is to measure the detectors’ recall. We run the detectors on all projects of MuBench, letting them mine patterns and detect violations on a per-project basis. Then, we again review all potential hits. As the ground truth, we use all 191 known misuses from MuBench, plus any previously unknown true positives identified by the detectors in Experiment P. This gives us the recall of the detectors with respect to a large number of misuses and, at the same time, crosschecks which of the detectors’ findings are also identified by other detectors.

**Experiment RNK.** The goal of Experiment RNK is to find the best ranking strategy for MuDetect among the candidate strategies discussed in Section III-D. Ideally, we would repeat both Experiments P and R for all 34 candidate ranking strategies to determine the best strategy. However, repeating Experiment P would require us to review up to 20 findings for each of the ten target projects per candidate strategy – a total of 6,800 findings –, which is practically infeasible. Therefore, we only repeat Experiment R for each of the candidate ranking strategies. This gives us both the recall of the detector, as well as the ranks of all confirmed hits, i.e., findings that identify a known misuse from MuBench. We use the number of hits, the average rank of all hits, and the number of hits in the top-20 findings as quality measures for the ranking strategies. To prevent overfitting, we use only the original MuBench for Experiment RNK and verify the result on our extended dataset.

**Experiment XP.** The goal of Experiment XP is to measure MuDetectXP’s precision and recall (in a cross-project setting). To measure precision, we run MuDetectXP on the ten sample projects from Experiment P and review its top-20 findings. To measure recall, we run MuDetectXP on all projects in MuBench and review all its potential hits for all known misuses, as in Experiment R. For each target project, we provide the detector with training projects for all APIs with known misuses in the target project. To ensure that the training projects contain examples of the APIs with known misuses in MuBench, we collect client projects of the respective APIs using the code-repository mining platform BOA [26] (full 2015 GitHub dataset). For each API, we query BOA for projects that either declare a field, variable, or parameter, or call a static method of the respective API type. We share the query template and the result lists [22]. From each list, we take the first 50 projects that are still available as of February 2018 and randomly sample up to 20 usage examples of the respective API from each project. This gives us a diverse cross-project sample of up to 1,000 usage examples per API.

**V. Results**

In this section, we present the results of our experiments and compare MuDetect’s detection performance with the detectors JADet, GrouMiner, Tikanga, and DMMC. All experiments ran on a MacBook Pro with an Intel Xeon @ 3.00GHz and 32GB of RAM. Tables II and III summarize the results; the full results are available on our artifact page [22].

We analyze the root causes for MuDetect’s false negatives (FN) and false positives (FP) in each subsection, as applicable, to validate whether our mitigation strategies were successful and to direct future work. We present the most prevalent root causes here and the full list on our artifact page [22]. We also discuss possible mitigation strategies and their trade-offs.

**A. Experiment RNK**

We first run Experiment RNK on the original MuBench to determine the best ranking strategy for MuDetect. Table II shows the best and worst ranking strategies ordered by the number of hits in the top-20 findings (@20), the number of hits (#H), and the average hit rank (AHR).

The results show that ranking has a huge impact on how high MuDetect ranks the misuses. We observe that the pattern support \( p_u \) appears in all of the top-16 and in none of the bottom-10 ranking strategies. Contrarily, the pattern uniqueness \( p_u \) appears in 11 of the bottom-15 strategies and in none of the top-10. The violation-overlap measure \( v_o \), the violation support \( v_s \), and the pattern violations \( p_u \) appear in different combinations in ranking strategies throughout the field. While this clearly shows that the pattern support is the most important ranking factor, the strategy consisting of only this factor is only the 9th-best strategy. This suggests that detectors should consider other factors as well. The best strategy combines the pattern support \( p_u \), the support of the violations \( v_s \), and the violation-overlap measure \( v_o \) into \( p_u / v_s / v_o \). Repeating Experiment RNK on our dataset extension identifies the same best ranking strategy. We use this strategy for MuDetect and MuDetectXP in all remaining experiments.

**B. Experiment P**

The first part of Table III summarizes the results of measuring the detectors’ precision in their top-20 findings.

\textbf{O1: MuDetect reports 146 violations in the top-20 findings in the ten projects. Among these violations, we find 32 true positives, 21 of which were previously unknown. This results in precision of 21.9\%, which exceeds the precision of the other detectors more than two-fold.}

The results of Experiment P show that the ranking strategy identified from Experiment RNK successfully pushes true positives to the top (P6 Ranking), allowing us to outperform other detectors. MuDetect also reports no false positives that are instances of alternative patterns. Since such false positives accumulate to 19\% of other detectors’ findings [18],...
we conclude that our filtering strategy successfully resolves
*P4* (Alternative Patterns). **MUDetect** reports no self-usages
and only one cross-method usage, which our filtering misses,
because the respective object is initialized as a local variable
and only later assigned to a field. While this is an opportunity
to improve our filtering heuristic, it also shows that our strategy
successfully mitigates *P5* (Self- and Cross-method Usages),
which caused 12% of the false positives of other detectors [18].
However, there are still false positives, due to different causes:

**FP1: Uncommon Usages.** 84 (73.7%) of the false positives
are uncommon-but-correct usages. In nine cases, e.g., a loop
calls `Iterator.hasNext()` again after calling `next()`, to check
whether there will be a subsequent iteration. **MUDetect** reports
a missing call to `next()` after this second call to `hasNext()`.
This illustrates two problems: (1) the heuristic for identifying
pure methods by the name prefix `get` misses cases such as
`hasNext()`, (2) **MUDetect** does not consider alternative non-
frequent patterns. This root cause of false positives corresponds
to *P3* (Uncommon Usages). We conclude that the removal of
calls to pure methods is insufficient to address this problem.
A future solution might be a *probabilistic model of API usage*
that considers the likelihood of different usages and reports no
violation if one usage is only slightly more likely than another,
or if an API’s usages generally vary a lot.

**FP2: Intra-procedural Analysis.** 18 (15.8%) of the false
positives are due to our intra-procedural analysis. In seven
cases, **MUDetect** reports missing usage elements that occur in
transitively called methods. Using an inter-procedural analysis,
e.g., to filter such false positives as proposed by Li and Zhou [8],
might help mitigate this problem. Future work should investigate
whether the additional computational cost pays off.

**C. Experiment RUB**

The second part of Table III summarizes the results of
measuring the upper bound to the detectors’ recall.

| O2: **MUDetect** identifies 124 of the 171 misuses used in
  this experiment (72.5%). This upper bound of recall clearly
  outranks that of the other detectors by 20.3% for **GROUMiner**
  and by over 54% for each of the other three detectors. |

**O2** shows that we successfully mitigated *P1* (Representation)
with the design of AUGs: (1) AUGs capture the difference
between correct usages and misuses better than all other
detectors’ representations and (2) our detection algorithm
succeeds in identifying these differences. There are still 15
false negatives due to *P1* (Representation), all cases where an
illegal parameter value (constants or literals) is passed as a
call parameter. None of the detectors can detect these, because
they do not capture concrete values.

**MUDetect** correctly matches pattern and target usages
despite different call order and polymorphic calls, which means
we successfully mitigated *P2* (Matching). There are still seven
false negatives where it does not match the respective pattern
and target usages, because they contain only a single, distinct
call. None of the detectors identifies these cases, because they
only match patterns and usages with at least one common call.

**O3: **MUDetect** identifies 47 of the 225 misuses. This results
in recall of 20.9%, which exceeds the recall of the other
detectors almost two-fold.**

**MUDetect** correctly identifies 13 misuses that none of the
other detectors identifies, eleven of which it already identified
in Experiment P. The other six previously unknown misuses
from Experiment P are also identified by at least one detector.

**MUDetect** misses 13 misuses that one of the other detectors
finds. Six of these are identified only by DMMC, because
the projects contain too few usage examples for the other
detectors to mine a respective pattern. DMMC’s probabilistic
approach may identify misuses with little evidence. In three of
the six cases, DMMC finds exactly two usage examples of the
respective API: a correct usage and the misuse. Consequently,
$p_s = 1$ and $p_v = 1$ and, therefore, confidence $= 0.5$, which
is exactly DMMC’s threshold for reporting a misuse. Since
**MUDetect** requires a pattern support of at least 10, it cannot
find these misuses. Another five of these misuses are identified
by JADet or Tikanga or both. In all cases, the target method
contains multiple equal misuses. JADet and Tikanga report
a single finding identifying the misuse, but since they do not
provide line locations within the method, we conservatively
count it as a hit for all the misuses. **MUDetect**, on the other
hand, reports findings at line level, which is why we only
count hits when the finding line matches the known misuse.

**D. Experiment R**

Overall, the detectors identified 34 previously unknown
misuses in Experiment P. With the 191 misuses from **MUBench**,
this gives us 225 misuses for measuring the detectors’ recall.
The third part of Table III summarizes the results.

| O3: **MUDetect** identifies 47 of the 225 misuses. This results
  in recall of 20.9%, which exceeds the recall of the other
detectors almost two-fold.** |

**O3** shows that we successfully mitigated *P1* (Representation)
with the design of AUGs: (1) AUGs capture the difference
between correct usages and misuses better than all other
detectors’ representations and (2) our detection algorithm
succeeds in identifying these differences. There are still 15
false negatives due to *P1* (Representation), all cases where an
illegal parameter value (constants or literals) is passed as a
call parameter. None of the detectors can detect these, because
they do not capture concrete values.

**MUDetect** correctly matches pattern and target usages
despite different call order and polymorphic calls, which means
we successfully mitigated *P2* (Matching). There are still seven
false negatives where it does not match the respective pattern
and target usages, because they contain only a single, distinct
call. None of the detectors identifies these cases, because they
only match patterns and usages with at least one common call.

Overall, **MUDetect** identifies 39 misuses that all other
detectors miss. In turn, **MUDetect** misses ten misuses that at
least one of the other detectors finds, eight of which are due
to the heuristics we introduced to improve precision, such as
filtering cross-method usages. There are 38 more misuses that
detectors miss. False negatives of **MUDetect** are due to:

**FN1: Self-Usages.** Eight cases are due to our removal of
self-usages, which successfully mitigated *P5* (Self- and Cross-
method Usages) in Experiment P. This means we traded recall
for precision. By capturing inter-procedural usages we might
make filtering self- and cross-method usages unnecessary and
enable us to identify misuses in them. The Chronicler [11]
detector mines usages from an inter-procedural call graph,
which might mitigate the problem. However, it is unclear how
to adapt this approach from considering only method calls to
all usage elements encoded in AUGs. Furthermore, such an
approach duplicates evidence, if methods are called multiple
times, which might bias the mining.

**FN2: Redundant.** Seven cases are misuses where the usage
has a redundant element that should be removed. Since all
detectors are designed to detect missing elements, none can
detect these misuses. It is worth noting that Droidassist [27]
uses a *probabilistic approach* that might find superfluous
method call, but the technique has never been evaluated.
Table III: Results: Experiment P measures precision in the top-20 findings. Experiment RUB measures recall upper bound. Experiment R measures recall. Experiment XP measure precision and recall of MuDetectXP.

<table>
<thead>
<tr>
<th>Detector</th>
<th>Experiment P</th>
<th></th>
<th>Experiment RUB</th>
<th></th>
<th>Experiment R</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Confirmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mises</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kappa Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Bound</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kappa Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| JADET          | 8            | 8.8%  | 0.64           |       | 29           | 16.9% | 0.79 | 6.7% | 0.64
| GROUMiner      | 4            | 2.6%  | 0.49           |       | 88           | 51.2% | 0.85 | 7    | 3.1% | 1.00
| TIKANGA        | 7            | 8.2%  | 0.52           |       | 15           | 8.8%  | 0.73 | 17   | 7.6% | 0.69
| DMMC           | 12           | 7.5%  | 0.72           |       | 28           | 16.3% | 0.88 | 24   | 10.7% | 0.91
| MuDetect       | 32           | 21.9% | 0.90           |       | 124          | 72.5% | 0.89 | 47   | 20.9% | 1.00
| MuDetectXP     | 30           | 33.0% | 0.88           |       | 95           | 42.2% | 0.93 |

line, resulting in only 1 hit being counted. For the last two of these misuses, MuDetect misses the pattern due to the greedy extension strategy that we chose to keep the mining scalable.

E. Experiment XP

While MuDetect has considerably higher recall than the other detectors, we aim to push its boundaries further. We observe that it has on average 227.6 usages examples (median = 105) for APIs whose misuses it identifies, but only 38.6 examples (median = 11) for those it misses. The moderate correlation (Pearson’s r = 0.52) between the number of examples and detecting a misuse supports the hypothesis that the target projects lack usage examples for some APIs.

The 225 misuses in Experiment R are from 59 APIs. For five of these, we find no projects with respective usages on GitHub and for another thirteen, we find less than 50 projects. For the remaining 41 APIs, we find 50 or more projects. The cross-project sampling (Section IV-B) collects on average 239.3 usage examples per API (median = 172), compared to the average of 78.5 (median = 25) in the per-project setting.

The last row of Table III shows the precision and recall of MuDetectXP compared to those of the other detectors in Experiment P and Experiment R.

O4: MuDetectXP reports 91 violations in the top-20 findings on the ten projects. Among these violations, we find 31 true positives, six of which were previously unknown. This results in precision of 33.0%, which outranks MuDetect by 11.1% and the other detectors almost fourfold.

O5: MuDetectXP identifies 95 of the 225 misuses. This results in recall of 42.2%, which improves on MuDetect results more than twofold and on the other detectors’ more than fourfold.

MuDetectXP identifies 65 misuses that MuDetect misses. For these misuses, MuDetect has on average only 94.6 usage examples (median = 16), while MuDetectXP has on average 258.4 examples (median = 216). This suggests that detectors should search for additional usage examples, if the target project itself contains too few. MuDetect, in turn, identifies 17 misuses that MuDetectXP misses. Ten of these are usages of APIs declared in the respective target project. Interestingly, the problem is not a lack of examples, as MuDetectXP has on average 239.3 (median = 172). A possible explanation is that APIs are used differently in the declaring project than in client projects. This suggests that detectors should consider, but distinguish both sources of usage examples.

The results of Experiment XP show that mining patterns from other projects significantly improves both precision and recall (P7 (Usage Examples)). This is encouraging for API misuse detection researchers: given the completely automated pipelines provided by MBenchPipe and MuBench, it should be straightforward for future work to integrate the latest techniques from finding reliable projects to mine [28] as well as evaluating quality of online examples [29]. This could even further improve on our results by easily retrieving more high-quality usage examples to train the detector.

F. Generalizability

Since we evaluate MuDetect on a dataset that we (in part) also used to design the detector, we run the risk of overfitting. To validate that this did not happen, we analyse by how much MuDetect improves over the other detectors separately on the original MBench (MBO) and our dataset extension (MEB).

On average, MuDetect’s precision increases 3.0x on MBO vs. 2.7x on MBE and MuDetectXP’s precision increases 3.9x on MBO vs. 4.5x on MBE, showing that the precision improvement generalizes.

On average, MuDetect’s recall increases 5.1x on MBO vs. 2.0x on MBE. This drop in recall improvement is due to MBE containing mostly smaller projects than MBO, where MuDetect’s more precise analysis struggles with the small number of training examples. Training data is apparently crucial, because MuDetectXP’s recall increases 5.5x on MBO vs. 6.6x on MBE, showing that the recall improvement generalizes, too.

G. Previously Unknown Misuses

In our experiments, MuDetect and MuDetectXP identified 27 previously unknown misuses. To validate these findings and as a contribution to the projects that served as our evaluation subjects, we manually created fixes for these misuses and submitted them as pull requests to the respective projects.

In this process, we excluded eight misuses, because the code containing them has been deleted from the respective project for reasons other than the misuse, and another three misuses, because the project does not accept pull requests. From the remaining 16 misuses, we created eight pull requests, grouping similar misuses into a single request.

To date, three of these pull requests were accepted: One fixes a bug in Google’s Closure compiler, which caused it to crash on code with an invalid reference in a block comment. Such a reference led the compiler to access an empty Iterator, leading to malformed data. The third fixes two bugs in Apache Lucene, which could lead search queries to crash due to missing checks on collections’ length. This demonstrates that MuDetect finds relevant problems in mature projects.
H. Discussion

Our results show that MuDETECT identifies relevant problems in mature software projects. It successfully adopts the strengths of existing detectors while mitigating many of their weaknesses, leading to 4x higher precision and recall. One of our industry partners showed interest to use MuDETECT in code-quality audits. The most important design decisions to achieve this were (1) separating pattern mining and violation detection, which enables us to apply MuDETECT in a cross-project setting, and (2) empirically investigating ranking strategies to push true positives to the top. Future work should investigate the performance and precision trade-offs of using inter-procedural static analysis to address remaining problems, such as FP2 (Intra-procedural Analysis) and FN1 (Self-Usages). Addressing other remaining problems, such as FP1 (Uncommon Usages) and FN2 (Redundant), likely requires different, e.g., probabilistic, models of API usage and mining algorithms.

VI. Threats to Validity

Overfitting. We designed MuDETECT based on prior work’s observations from experiments on MuBench [18]. We evaluated MuDETECT (in part) on the same benchmark, which bears the danger of overfitting. To mitigate this threat, we extend the benchmark to more than twice its original size and validate that MuDETECT’s performance generalizes to this extended dataset.

Internal Validity. We did not fine-tune the other detectors, but used the best configurations reported in their respective publications. We reviewed the detectors’ findings ourselves. The detector producing a finding was known, because we could not blind their distinct representations of API usages and violations. We evaluated only MuDETECTXP in the cross-project setting, because the other detectors cannot use separate datasets for mining and detection. Modifying them ourselves to support this might hamper with their capabilities. We published the list of example projects we used [22] and encourage others to assess their approach in this setting. Providing MuDETECTXP with only example usages for the APIs with known misuses in MuBench potentially biases the results with respect to precision, because it reduces the overall number of patterns and, consequently, might reduce the number of reported violations.

External Validity. The dataset of API misuses in our evaluation might not be representative. We mitigated this by using MuBench, a public and state-of-the-art benchmark. The API misuses it contains cover the capabilities of all detectors in our evaluation. We further extend the benchmark by findings from a large-scale study [19].

VII. Related Work

Helping developers use APIs has received much attention. Approaches include improving documentation (e.g., [30], [31]) and assisting developers with recommendations while writing code (e.g., [32], [33]). Another direction is API-misuse detection, which can be further classified into static and dynamic approaches. Dynamic approaches execute programs to detect deviations from normal behavior (e.g., [34], [35]). Our focus is on static misuse detectors, so we briefly discuss existing ones. Amann et al. [18] present a detailed survey and comparison of detectors and their capabilities.

The closest work to MuDETECT is GROUMiner [12], which uses a graph-based representation (GROUMs) for API usages. GROUMiner’s relatively high recall [18] led us to also use a graph representation. Both AUGs and GROUMs are directed graphs that capture calls, field accesses, and control/data dependence. However, GROUMs are simple graphs that encode actions and loop/branching statements in nodes and use unlabelled edges to uniformly represent data and control dependence. AUGs are multigraphs that capture actions and data entities in nodes and distinguish different kinds of control/data dependence (including exceptional and synchronized flow) in labelled edges. This precisely differentiates usages in our mining and detection algorithms and improves scalability.


CAR-Miner [14] is a detector for C++ and Java, specialized in detecting wrong error handling. Alattin [15] is a detector for Java that detects missing null checks, missing value or state conditions not involving literals, and missing calls required in checks. DroidAssist [17] is a detector for Dalvik Bytecode. It uses a Hidden Markov Model to compute the likelihood of call sequences to detect missing, misplaced, and redundant method calls; no evaluation was presented in the paper.

VIII. Conclusion

In this paper, we investigate whether the performance of API-misuse detectors can be improved. We design MuDETECT to build on the strengths, and address many of the problems, of existing detectors. We systematically design a ranking strategy that effectively ranks true positives among MuDETECT’s top findings. We compare the performance of MuDETECT to four state-of-the-art detectors. Our evaluation shows that MuDETECT clearly outranks these detectors, with recall upper bound of 72.5%, recall of 20.9%, and precision of 21.9% in the typical per-project setting. In a cross-project setting, MuDETECT’s recall reaches 42.2% and its precision 33.0%. We also analyze the remaining false negatives and false positives to help researchers identify further improvement opportunities.

Acknowledgements

This work was partially funded by the German Federal Ministry of Education and Research (BMBF) within the Software Campus project Eko, grant no. 01IS12054, by the DFG as part of CRC 1119 CROSSING, and by the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP. The authors assume responsibility for the paper content.