
Teamscale: Software Quality Control in Real-Time ∗

Lars Heinemann Benjamin Hummel Daniela Steidl
CQSE GmbH, Garching b. München, Germany

{heinemann,hummel,steidl}@cqse.eu

ABSTRACT
When large software systems evolve, the quality of source
code is essential for successful maintenance. Controlling
code quality continuously requires adequate tool support.
Current quality analysis tools operate in batch-mode. As
the batch analyses take up to several hours for large systems,
existing tools hamper the integration of quality control into
the daily development process. In this paper, we present
the incremental code quality analysis tool Teamscale. The
tool provides feedback to the developer within seconds af-
ter his commit and enables real-time software quality con-
trol. We evaluated the tool within a development team
of the LV 1871, a German insurance company. A video
demonstrates our tool: http://www.youtube.com/watch?v=
nnuqplu75Cg.

1. INTRODUCTION
In many domains, software evolves over time and is often

maintained for decades. Without effective counter measures,
the software quality gradually decays [4, 10], affecting qual-
ity aspects of the system (e. g., reliability, portability, effi-
ciency) and increasing costs for software maintenance. To
avoid high long-term maintenance costs, continuous quality
control is necessary during development. Continuous qual-
ity control comprises different activities: When developers
commit their changes, they should be aware of the impact on
the system’s quality and when introducing new quality de-
fects, they should remove them appropriately. Project and
quality managers should check the quality status in regu-
lar intervals and take actions to improve quality. Research
has proposed various metrics to assess software quality, in-
cluding structural metrics (file size, method length, maximal
nesting depth) or redundancy measurements (code cloning),
leading to a massive development of analysis tools.

∗This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant ”Evo-
Con, 01IS12034A”. The responsibility for this article lies
with the authors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’14 May 31–June 7, 2014, Hyderabad, India
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

However, existing tools have three major disadvantages.
First, they require a huge amount of time for the analysis
of a large system which can take several hours [1]. Con-
sequently, quality analyses are scheduled to off-work hours,
e.g. during a nightly build, and developers are not notified
of possible problems in their code until the next morning.
However, by then, they often already work on a different
task and do not handle quality issues of an old, closed task.
Second, development teams produce hundreds of individual
commits to a software system per day. Nightly analyses ag-
gregate these commits and make it hard to identify the root
causes for unexpected changes in metrics or quality defects.
Instead, developers must reverse engineer the root causes
from the versioning system. Third, analysis techniques re-
veal hundreds or thousands of quality problems for a long-
lived software project, making it infeasible to fix all quality
issues at once. With existing tools, developers cannot dif-
ferentiate between old and new quality defects, which often
results in frustration and no quality issue fixing at all.

Problem Statement. All existing quality analysis tools
have long feedback cycles and no mechanism to differentiate
between old and new findings, hampering their integration
into daily development.

Teamscale1 is a quality analysis and management tool that
overcomes the drawbacks of existing ones: Using incremen-
tal quality analyses [1], the tool processes each commit in-
dividually within seconds. and provides real-time feedback
to the developer, revealing the impact of a single commit
on the system’s quality. The tool has the full history of the
code quality’s evolution at its disposal, supporting efficient
root cause analysis for specific quality problems. Combin-
ing incremental analysis with tracking [11] of quality issues,
the tool distinguishes between old and new quality defects,
encouraging developers to fix recently added findings.

Contribution. Teamscale provides quality analysis in
real-time, integrating into the daily development.

With a web front-end and an integration into the IDE, the
tool offers different perspectives on the quality of a system.
The tool provides an overview of all commits and their im-
pacts on the system’s quality as well as a file-system based
view to browse source code annotated with quality defects.
It also offers an aggregated view on the current quality status
with the help of dashboards and enables root cause analysis
for specific quality problems.

1http://www.teamscale.com

REST

NoSQL

Incremental Analysis Engine

Scheduler

Worker 1 Worker N

SVN

TFS

File System

Web Client

Eclipse

Visual Studio

Store

Service
Layer

Figure 1: High-Level Architecture

2. RELATED WORK
In the current state of the art, many quality analysis tools

already exist.There are numerous tools, for example, for the
analysis of a specific quality metric or defect. While some
of them are even incremental [5], Teamscale aims at provid-
ing a differentiated, all-encompassing perspective of software
quality by using a broad spectrum of metrics and analyses.

Distributed Quality Analysis Tools. Shang et al. [12]
propose to address scalability by adapting tools which orig-
inally were designed for a non-distributed environment and
deploying them on a distributed platform such as MapRe-
duce. Using enough computing ressources, their approach
can reduce the feedback to developers to minutes. However,
their approach focusses on individual analyses and does not
provide a comprehensive front-end to the quality analysis
data. Additionally, our approach of incremental analysis re-
quires significantly less computing resources.

Quality Dashboards. Multiple tools provide the user
with a dashboard containing various aggregations and visu-
alizations of a system’s source code quality. Tools include
ConQAT [3], SonarQube2, or the Bauhaus Suite3. All of
these tools provide a custom analysis engine, integrate the
results of other existing analysis tools, and provide config-
urable means of displaying the results. All of them, however,
require multiple hours on large systems, making real-time
feedback and fine-grained root cause analysis impossible.

Incremental Quality Analysis Tools. The conceptu-
ally most similar tool to ours is SQUANER [7]. It also pro-
ceeds incrementally, and updates are triggered by commits.
It also aims to provide rapid developer feedback. However,
the calculated metrics are file-based and thus limited to local
analyses (see [1] for more details). Unfortunately, the cor-
responding web site is unreachable, but the paper suggests
that the data representation does not support root cause
analysis and that no tracking of quality defects is provided.

3. ARCHITECTURE
Teamscale is a client/server application: the quality anal-

yses are performed on a central server and different user
clients present the results. Figure 1 shows an overview of
Teamscale’s architecture: The incremental analysis engine
in the back-end connects to various different data sources,
e. g., version control systems. A REST Service Layer pro-
vides the interface of the analysis results for different front-
end clients.

Data Sources. Teamscale directly connects to differ-
ent version control system (VCS), such as Subversion, GIT

2Formerly called Sonar, http://www.sonarqube.org
3http://www.axivion.com/products.html

and Microsoft’s TFS. It constantly monitors the activity in
the VCS and directly fetches its changes. Each commit in
the VCS triggers the update of all quality analyses. Conse-
quently, in contrast to batch tools, Teamscale does not need
to be integrated with continuous integration tools. Team-
scale is able to analyze multi-language projects, support-
ing all widely used languages, such as Java, C#, C/C++,
JavaScript, and ABAP. Teamscale further relates quality
analysis results with bug or change request data as it con-
nects to bug trackers such as Jira, Redmine and Bugzilla.

Incremental Analysis Engine. In the back-end, the
incremental analysis engine [1] is built on top of the tool
ConQAT [3]. Instead of analyzing a complete software sys-
tem in batch-mode, it updates quality metrics and findings
with each commit to the VCS. Our study in [1] showed
that our incremental analyses perform significantly faster
than batch analyses. As commits typically consist of only
few files, Teamscale computes their impact on the system’s
source code quality within seconds, providing rapid feedback
for the developer. Monitoring the quality changes based on
single commits enables a fine-grained root cause analysis.

Storage System. Teamscale has a generic data stor-
age interface supporting various noSQL data stores (such
as Apache Cassandra4). Incremental storage of the analysis
results over the system’s history [1] allows to store the full
analysis data for every single commit as well as the complete
history of every source code file within reasonable space. A
medium-sized system with 500 kLOC and a history of 5 years
typically requires 2–4 GB of disk space.

REST Service Layer. A REST service layer provides
an interface for retrieving all stored quality analysis results,
supporting a variety of clients on multiple platforms.

Clients. Multiple user clients present the quality analy-
sis’ results. A JavaScript-based web front-end allows plat-
form independent access to Teamscale. For developers, IDE
clients integrate quality analysis results directly in their de-
velopment environment, such as Eclipse or Visual Studio.

4. CODE QUALITY ANALYSES
Teamscale offers many common quality analyses. For the

remainder of this paper, we refer to the term finding for all
quality defects that can be associated with a specific code
region. A finding can, e. g., result from a violation of a metric
threshold (such as a file which is too long) or be revealed by
a specific analysis such as clone detection or bug pattern
search. In the following, we will give an overview of the
provided analyses:

Structure Metrics. As major structural metrics, Team-
scale comprises file size, method length, and nesting depth.
These metrics are aggregated based on the directory struc-
ture and result in findings when thresholds are violated.

Clone Detection. Teamscale uses an incremental, index-
based clone detection algorithm [8] to reveal code duplica-
tion by copy and paste. It can be also configured to use
an incremental gapped clone detection to find inconsistent
clones which are likely to contain incomplete bug fixes [9].

Code Anomalies. Teamscale analyzes many different
code anomalies, e. g., naming convention violations, coding
guideline violations, and bug patterns: we integrate state-
of-the-art bug pattern detection tools such as FindBugs5,

4http://cassandra.apache.org
5http://findbugs.sourceforge.net

PMD6, and StyleCop7. Tools that do not work incremen-
tally (e. g., FindBugs due to non-trivial cross-file analysis)
are integrated via a finding import from the nightly build.

Architecture Conformance. Architecture conformance
assessment compares a high-level architecture specification
model against the actual dependencies in the code. Team-
scale uses the ConQAT architecture conformance assessment
[2] which provides a simple component dependency model.
The system is modeled as a hierarchical decomposition into
components with dependency policies between them. The
assessment result is an annotated version of the component
model that rates each dependency as satisfied or violated.

Source Code Comments. The code comment analysis
verifies if documentation guidelines for the existence of code
comments are met, which may for instance prescribe that
every public type and public method must have an interface
comment. In addition, a machine-learning based algorithm
reveals commenting deficits, such as trivial or inconsistent
comments which do not promote system understanding [13].

Test Quality. From the nightly build, Teamscale uses
test coverage data and visualizes which parts of the source
code are covered by tests.

5. USER CLIENTS
The results of all quality analyses are available in either a

web front-end or the IDE.

5.1 Web Front End
The web client is organized in perspectives, which provide

different views of the system’s quality: The code perspective
allows to browse the source code, its quality metrics and
findings. The activity perspective displays all commits in the
system’s history, the finding perspective presents all current
quality findings whereas the dashboard perspective offers an
aggregated overview of the quality status. The web front-
end supports various different use cases (UC):

UC1: Inspecting quality defects in specific com-
ponents. In the code perspective, Teamscale offers a file-
system based view on source code, metrics and findings. The
user can navigate through the directory structure to find
quality defects in specific parts of the system. As all source
code and quality analysis results are held in Teamscale for
the entire history, the code perspective also functions as a
time machine to browse previous versions of the code and
its findings. On file level, the source code is annotated with
findings indicated with colored bars and tool tips next to the
code. For each directory level and quality metric, Teamscale
provides trend charts showing the evolution of the metric for
the selected directory, such as the growth in lines of code or
the evolution of the clone coverage.

UC2: Inspecting the quality impact of the last
commit. The activity perspective shows all commits. Be-
sides the information on the change itself (i. e., revision num-
ber, author, message, affected files), Teamscale reveals the
impact on the quality status for each change: It indicates
how many quality problems were introduced or removed
with this change. In addition, the bug tracker integration
relates the commits to change requests or bugs.

UC3: Comparison of two versions of the system.
Teamscale can compute the change delta between two differ-

6http://pmd.sourceforge.net
7https://stylecop.codeplex.com

Figure 2: Dashboard Perspective

ent versions of the system, which shows the changes within
the time frame between the two versions: The change delta
contains information about added, deleted, or changed files,
the version control system commits within the time frame,
metric value changes, as well as added or removed findings.

UC4: Assessment of architecture conformance.
Teamscale provides a visualization of the architecture speci-
fication annotated with its assessment according to the cur-
rent dependencies in the code. In case a dependency policy
is violated, it allows to identify the problematic dependency
in the code, i.e. navigate from the model down to individual
files that contain the architecture violation.

UC5: Identification and management of findings.
In the findings perspective, the user can browse quality de-
fects along two dimensions—the directory hierarchy and the
finding categories. Teamscale is capable of tracking these
findings during the software evolution, in which the loca-
tion of a finding can change: the finding may move within
a file or even across files due to edit operations, moving
code snippets, or file renames. Teamscale can track this,
using a combination of ideas from [6] and [11]. Based on
findings tracking, individual findings, such as false positives,
can be blacklisted. A blacklisted finding will not be further
reported. Teamscale also offers the opportunity to only in-
spect findings that were added since a configurable revision,
e. g., the last release. This way, when developers clean up
code, they can focus on newly added findings.

UC6: The system’s quality at a glance. The dash-
board perspective gives an at-a-glance view on the overall
quality status. The users can freely build personal dash-
boards based on a variety of configurable widgets. With
his personal dashboard, the user can focus on specific qual-
ity aspects that are relevant for him. Teamscale provides
widgets for displaying metric values with delta indicators,
metric distributions, tree maps, trend charts, and quality
deficit hotspots. Figure 2 shows an example dashboard.

5.2 IDE Integration
Teamscale provides plug-ins for two widely used IDEs:

Eclipse and Visual Studio. The IDE clients annotate the
code with findings from the Teamscale server, making de-
velopers aware of existing quality issues in their code.

6. QUALITY CONTROL SUPPORT
Teamscale is designed to be used in a continuous qual-

ity control process during daily development. Continuous
control requires constant monitoring of the quality, a trans-
parent communication about the current status as well as
specific tasks on how to improve the quality. Teamscale
supports various usage scenarios for different stakeholders
in this process: The project-manager uses the dashboard to
check the quality status of his system in regular intervals.
For each commit, a developer receives feedback about find-
ings that were introduced or removed with this commit. A
quality manager can monitor the evolution of the quality, de-
tect the root-cause for quality problems and create specific
tasks to improve the system’s quality.

7. EVALUATION
We evaluated our tool with a development team from a

German insurance company, LV 1871 which comprises about
ten developers, among which six took part in the evaluation.
The developers had an average of 18.5 years of programming
experience and are hence considered suitable for evaluation.

Set Up. We first gave the developers a short introduc-
tion to the tool. Afterwards, the developers were asked to
solve specific tasks with Teamscale and to fill out an anony-
mous online survey about their user experience. The tasks
comprised nine questions related to the quality of the team’s
software and were guided by the use cases presented in Sec-
tion 5.1, except of UC4 (as no architecture specification was
available). Developers were also asked to commit live to the
tool and evaluate the feedback cycle. Solving the tasks en-
sured that the developers were familiar with the tool before
taking part in the survey and showed whether developers
succeeded to use the tool to find the required information.

Results. Of all 9 tasks, all developers were able to com-
plete 7 tasks correctly. Two tasks regarding the dashboard
perspective were not solved correctly by all, two developers
each made a mistake. Problems with those two tasks were
related to a lacking piece of information about a specific
dashboard widget. In the survey, developers rated several
statements about Teamscale on a Likert scale from 1 (I to-
tally agree) to 6 (I do not agree at all). Table 1 shows the
average developer response per statement (µ) and the stan-
dard deviation (σ). The results show a very positive user
experience. All developers agreed that they want to use
Teamscale for their own development (µ = 1.2) and that
Teamscale provides fast feedback in practice (µ = 2). They
also agreed that they were able to differentiate between new
and old quality problems (µ = 1.5) and that Teamscale en-
ables root-cause analysis (µ = 1.67). To summarize, the de-
velopers showed that they were able to solve specific tasks
successfully using the tool and that they would like to be
supported by the tool in their daily development.

8. CONCLUSION
In this paper, we presented a comprehensive quality analy-

sis tool which performs in real-time. Giving feedback about
the impact of a change on the quality of a system within
seconds, the tool smoothly integrates into the daily develop-
ment process, enabling successful continuous quality control
in practice. Providing root cause analysis, developers can
identify the cause of a specific quality problem and address
it appropriately. With the help of findings tracking, devel-

Table 1: Average Developers’ Agreement
Statement µ σ

Teamscale provides a good overview of
the quality of my software.

1.5 0.5

Teamscale helps to identify the root cause
of quality problems.

1.67 0.47

Teamscale supports me in a
quality-driven software development

1.67 0.47

Teamscale provides feedback fast enough
in practice.

2 0.57

Teamscale makes it easy to differentiate
between new and old quality problems.

1.5 0.5

Teamscale’s UI is intuitive. 2 0
I’d like to use Teamscale for my own
development.

1.2 0.37

opers can decide which findings should be reported, helping
them to manage and remove findings such that quality actu-
ally improves. With the tool, developers, quality managers,
and project managers get their own perspective on the sys-
tem’s quality, adapted to the specific needs of each role. A
survey among developers showed a high user acceptance.

Acknowledgements
We thank our evaluation partner LV 1871 for their support.

9. REFERENCES
[1] V. Bauer, L. Heinemann, B. Hummel, E. Juergens,

and M. Conradt. A framework for incremental quality
analysis of large software systems. In ICSM’12, 2012.

[2] F. Deissenboeck, L. Heinemann, B. Hummel, and
E. Juergens. Flexible architecture conformance
assessment with ConQAT. In ICSE’10, 2010.

[3] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
B. M. y Parareda, and M. Pizka. Tool support for
continuous quality control. IEEE Softw., 2008.

[4] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Softw., 2001.

[5] N. Göde and R. Koschke. Incremental clone detection.
In CSMR’09, 2009.

[6] N. Göde and R. Koschke. Frequency and risks of
changes to clones. In ICSE ’11, 2011.

[7] N. Haderer, F. Khomh, and G. Antoniol. SQUANER:
A framework for monitoring the quality of software
systems. In ICSM’10, 2010.

[8] B. Hummel, E. Juergens, L. Heinemann, and
M. Conradt. Index-based code clone detection:
Incremental, distributed, scalable. In ICSM’10, 2010.

[9] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In ICSE ’09, 2009.

[10] D. L. Parnas. Software aging. In ICSE ’94, 1994.

[11] S. P. Reiss. Tracking source locations. In ICSE ’08,
2008.

[12] W. Shang, B. Adams, and A. E. Hassan. An
experience report on scaling tools for mining software
repositories using mapreduce. In ASE’10, 2010.

[13] D. Steidl, B. Hummel, and E. Juergens. Quality
analysis of source code comments. In ICPC’13, 2013.

