
Delta Analysis

Nils Göde, Florian Deissenboeck

CQSE GmbH
Lichtenbergstr. 8, 85748 Garching bei München, Germany

{goede, deissenboeck}@cqse.eu

Abstract

We use various kinds of static analyses to identify
problems that decrease the quality of our system. In
many cases, however, the number of reported prob-
lems is huge—preventing us from solving these prob-
lems due to a lack of resources or motivation. We
suggest a technique called “delta analysis” together
with a simple behavioral rule that allows to deal with
large numbers of problems and gradually improves the
quality of our system.

1 Introduction

Improving the quality of our software is usually a
two-step process. First, we have to identify existing
problems and then, we have to remove them. Var-
ious kinds of static analyses exists to automatically
detect and report existing problems in our software.
But while the analyses are often fully automated and
easy to apply, the second step—actually removing the
problems—is a much harder task.

Independent from the specific type of analysis,
tools are likely to report thousands of problems for
real-world software which is usually long-lived and
contains much legacy code. Since not all of these
“problems” have to be real problems and many of
them may be more of an indication, we use the more
general term finding for the remainder of this paper.
Especially if no quality control measures have been
taken in the past, we often find ourselves confronted
with a huge and unmanageable pile of findings when
running an initial analysis. Removing all findings at
once is in almost all cases infeasible, due to the lim-
itation of resources and the risk of introducing new
defects when removing existing findings. In addition,
the huge number of findings itself and the compara-
tively small progress we make in removing them may
decrease our motivation and make us resign.

In the remainder of this paper, we summarize our
idea of an incremental improvement strategy and ex-
plain how it is supplemented by a technique named
“delta analysis”. The combination of both results in a
continuous reduction of findings and ultimately leads
to higher quality.

Static
Analysis

Static
Analysis

Findings
Churn

Baseline

Current

Figure 1: Delta Analysis

2 Incremental Improvement

Instead of solving all findings in a single session, which
is in most cases infeasible, we suggest to incrementally
remove findings. The central concept of our approach
is whenever you change a file, leave it in a better state
than it was before—inspired by Robert C. Martin’s
interpretation of the American Boy Scout rule leave
the campground cleaner than you found it [5].

In our case “better state” or “cleaner” means less
findings detected by static analyses. Our assumption
is that when you have to change a file, you are forced
to read and understand its contents. Given that you
have read and understood the file, you are in a very
good position to solve at least some of the other find-
ings within that file. Furthermore, the original change
and any additionally removed findings can be tested
in a single run and do not require separate test runs.
If the simple rule is obeyed in any case, the number
of findings will naturally go down whereas the quality
of our system improves.

On the one hand, we do deliberately not insist on
leaving the file in a perfect state, because that may—
depending on the number of findings within that file—
result in developers not removing any findings due to
limited time or a lack of motivation. On the other
hand, we require at least a little improvement to en-
sure a gradual increase of the overall quality.



3 Delta Analysis

At the heart of our delta analysis is comparing the
findings found within two successive snapshots of our
system. We refer to the earlier snapshot as “baseline”
as it defines the state of our system which we would
like to improve. Findings within the baseline are seen
as legacy problems for which we accept that they exist.
We then execute the static analyses for both snapshots
separately and compare the detected findings. The
result is the findings churn, telling us about which
findings have been removed, which findings remain,
and which findings have been newly introduced. The
findings churn allows us to decide whether the state of
a file is better after it has been changed. We suggest to
integrate the results into a quality dashboard to make
them accessible to developers and project managers.
The process is illustrated in Figure 1.

In comparison to the traditional static analysis
with thousands of findings, we are now confronted
with only a comparatively small and manageable num-
ber of findings. Furthermore, all findings are related
to our latest activity as the delta analysis “hides” all
legacy findings which already existed in the baseline.
We can now combine this information with our rule
of leaving each file in a better state than before to en-
sure that the overall quality or our system is gradually
improving.

4 Advantages

One of the advantages of delta analysis is that the
acceptance of the developers is high since they can
chose how many findings they actually remove. They
are not confronted with an unmanageable number of
findings, but can use the results of the delta analysis to
inspect those findings that are related to their recent
activity. Furthermore, the overall progress of improv-
ing the system’s quality is measurable by counting
the number of removed findings. Being able to actu-
ally see that the number of findings is continuously
reduced may also increase the developers’ motivation
and acceptance of quality control measures.

Another positive aspect of delta analysis is that it
is not limited to specific types of analyses, but works
for all kinds of findings. These include, for example,
exceeded metric thresholds, architecture violations [2],
and code clones [4]. The concept of delta analysis is
independent from the actual source of findings and
can also be used for findings detected by tools like
PMD or FindBugs.

Delta analysis also allows to integrate new checks
smoothly. Using simple static analyses, integrating
new checks usually results in a huge number of find-
ings in the initial analysis and all too often causes the
abandonment of the new rule. Using delta analysis
makes the integration of new checks much easier, be-
cause it focuses on those findings that were introduced
since the baseline.

From a technical perspective, results are not stored
in a database but the analyses are run for the baseline
and the current snapshot of the system every time.
This provides a great deal of flexibility, because the
baseline can easily be changed. In addition, multi-
ple baselines can be used to analyze the stepwise im-
provement of the system’s quality. Running the delta
analysis for the baseline and the current snapshot also
allows to change the static analysis algorithms or their
configuration while maintaining the comparability of
the snapshots.

5 Experience

We have implemented the delta analysis using the
ConQAT [1, 3] toolkit. We have integrated the delta
analysis as part of the continuous quality control in
about two dozen projects of two of our customers,
Munich RE and ABB. The delta analysis has been
used in these projects for some time and the feedback
from the users is consistently positive. In particular,
the users appreciate the possibility to focus on rele-
vant findings which are related to their latest activity.
Some of them even regard the delta analysis as an
inevitable building block of quality control without
which static analyses would not be applicable to large
and long-lived systems.

6 Conclusion

In summary, we conclude that delta analysis is a cru-
cial part of continuous quality control as it adds sig-
nificant value to static analyses as our customers con-
firmed. Especially for long-lived systems, delta anal-
ysis helps to focus on relevant findings by abstracting
from the unmanageably huge pile of legacy problems.

References

[1] ConQAT. www.conqat.org.

[2] F. Deissenboeck, L. Heinemann, B. Hummel, and
E. Juergens. Flexible architecture conformance as-
sessment with conqat. In Proceedings of the In-
ternational Conference on Software Engineering,
pages 247–250. ACM, 2010.

[3] F. Deissenboeck, E. Juergens, B. Hummel, S. Wag-
ner, B. Mas y Parareda, and M. Pizka. Tool sup-
port for continuous quality control. IEEE Soft-
ware, 25(5):60–67, 2008.

[4] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proceedings
of the International Conference on Software Engi-
neering, pages 485–495. IEEE Computer Society,
2009.

[5] R. C. Martin. Clean Code: A Handbook of Ag-
ile Software Craftsmanship. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2008.


