A Structured Approach to Assess Third-Party Library Usage

Veronika Bauer Lars Heinemann

Technische Universitdt Miinchen, Germany

{bauerv, heineman} @in.tum.de

Abstract—Modern software systems build on a significant
number of external libraries to deliver feature-rich and high-
quality software in a cost-efficient and timely manner. As a
consequence, these systems contain a considerable amount of
third-party code. External libraries thus have a significant
impact on maintenance activities in the project. However,
most approaches that assess the maintainability of software
systems largely neglect this important factor. Hence, risks may
remain unidentified, threatening the ability to effectively evolve
the system in the future. We propose a structured approach
to assess the third-party library usage in software projects
and identify potential problems. Industrial experience strongly
influences our approach, which we designed in a lightweight
way to enable easy adoption in practice. We present an
industrial case study showing the applicability of the approach
to a real-world software system.

Keywords-software reuse, APL library, software maintenance

I. INTRODUCTION

Reuse with software libraries plays a central role in mod-
ern software development—instead of writing a complete
software system from scratch, significant parts of its building
blocks are reused from third-party libraries. Especially for
widely-used platforms like Java, a considerable amount of
reusable libraries with a large variety of functionality is
available in code repositories on the Internet. In a recent
study on reuse in Java open source projects we found that
for almost half of the projects the amount of reused code
exceeded the amount of newly developed code [1].

However, library reuse comes at a cost: Included libraries
can significantly impact the maintainability of a software
system. Often, projects use a number of different libraries
and the code is highly entangled with their APIs. This poses
multiple risks to the evolution of the software. First, libraries
continuously evolve. New releases provide added function-
ality and bug fixes. In many cases, it is desirable to migrate
a software system to the latest stable release of a library,
especially in case of critical bugs such as security flaws.
However, migration can cause considerable maintenance ef-
fort, as backward-compatibility may not always be ensured.
Second, a library might be still unstable and introduce bugs
into the software, which could be difficult to find and hard to
fix. Third, the provider’s support or maintenance of a library
might be discontinued, such that the library consumer can
no longer expect fixes for critical bugs. Finally, the license

Florian Deissenboeck
CQOSE GmbH, Germany
deissenboeck@cqse.eu

of a library or the legal constraints in a project may change,
forcing the project to stop employing the library. Again,
a potentially costly replacement with a different library
or an own implementation of the reused functionality is
required. Unfortunately, most existing approaches that aim at
assessing the maintainability of a software system primarily
focus on the project’s own code. The included libraries
are often disregarded, missing important aspects affecting
maintainability.

Problem: A plethora of external software libraries form
a significant part of modern software systems. Consequently,
these systems contain a considerable fraction of code devel-
oped and maintained by third parties. Therefore, external
libraries and their usage have a significant impact on the
maintenance of the including software. Unfortunately, third-
party libraries are often neglected in quality assessments
of software, leading to unidentified risks for the future
evolution of the software.

Contribution: Based on industry needs, we propose
a structured approach for the systematic assessment of
third-party library usage in software projects. It can be
applied to support specific maintenance decisions as well
as to monitor the project’s state of reuse over time. The
approach is supported by a comprehensive assessment model
relating key characteristics of software library usage to
development activities. The model defines how different
aspects of library usage influence the activities and, thus,
allows to assess if and to what extent the usage of third-
party libraries impacts the development activities of a given
project. Furthermore, we provide guidance for executing
the assessment in practice, including tool support for a
pre-selection of important libraries and multiple automated
static code analyses. We evaluate the approach with a case
study involving an industrial software system of 3.5 MLOC
including about 90 external libraries.

Outline: The remainder of the paper is organized as fol-
lows: Section II introduces the industry partners of this work.
Section IIT presents the assessment model, whilst Section IV
details the assessment process. Section V describes the tool
support provided for the analysis. Section VI presents design
and results of the case study. The following Sections VII
and VIII discuss results and threats to validity. Section IX
gives an overview on related work before Section X con-
cludes the paper and identifies future work.

II. INDUSTRY PARTNERS

This work involves two industry partners: The model
was designed in cooperation with CQSE GmbH!'. azh
Abrechnungs- und IT-Dienstleistungszentrum fiir Heilberufe
GmbH? was our partner for the case study. This section
briefly introduces the two companies.

The CQSE GmbH was founded in early 2009 as a spin-off
of the competence center for Software Quality and Mainte-
nance at the chair for Software & Systems Engineering of
the Technische Universitdt Miinchen. It provides consulting
services for software quality assurance. In particular, it helps
customers in applying novel techniques like clone detection
and architecture conformance analysis to ensure long-term
maintainability of their software systems.

The azh Abrechnungs- und IT-Dienstleistungszentrum fiir
Heilberufe GmbH is one of the largest provider for billing
and IT-services for professional health care providers in
Germany. With 550 employees they provide support for
20,000 customers.

III. ASSESSMENT MODEL

The proposed assessment model is inspired by activity-
based quality models [2] that offer a soundly structured and
precise way of expressing quality factors and their mutual
dependencies. In this model, we follow the terminology
coined by Kitchenham et al. where entities “are the objects
we observe in the real world” and attributes are ‘“the
properties that an entity possesses” [3]. We extend this by
allowing an attribute to be attached to multiple entities and
adapted the meta-model from [2], as shown in Figure 1. This
is necessary as several relevant library attributes emerge only
from the relation between entities. Figure 2, which shows the
concrete instantiation of the meta-model, contains examples:
for instance, the attribute ENTANGLEDNESS is attached to the
entities System and Library as it models a characteristic that
involves both.

Entities are structured in a hierarchical manner to foster
completeness. The combination of one or more entities
and an attribute is called a fact. Facts are expressed as
[Entities | ATTRIBUTE]. A fact has an assessment type, which
can be a manual assessment by an expert, an automatic
analysis, or semi-automatic as a combination of the above.
To express the impact of a fact, the model relates the fact to
a development activity. This relation can either be positive,
i.e., the fact eases the affected activity, or negative, i.e.,
the fact impedes the activity. In Figure 2, for example,
the ENTANGLEDNESS of System and Library has a negative
impact on all maintenance activities whereas the protection
against security-relevant attacks as well as the legal aspects
of the distribution of the system are not affected by this fact.

Impacts are expressed as [Entity | ATTRIBUTE] i [Activity].

Uhttp://www.cqse.eu/
Zhttp://www.azh.de/

Each impact is backed by a justification, which provides
the rationale for its inclusion in the model.

So far, the model constitutes a Definition Model in the
sense of [4] as it defines quality aspects and their relations.
To become an assessment model that can be used to assess a
specific situation, it needs to be enriched with metrics and a
measurement method. We provide this with the three-value
ordinal scale {low, medium, high} that is used to quantify
facts. The assessment of the facts is mainly a manual activity
performed by an expert who bases the judgement on a set of
metrics that may be determined automatically. Table I shows
the metrics used in our model.

To assess the impact on the activities, we use the three-
value scale {bad, satisfactory, good}. If the relation between
a fact is positive, there is a straight-forward mapping from
low — bad, medium — satisfactory, high — good. If the
fact [Library | PREVALENCE], for example, is rated high, the
effect on the activity migrate is good as the impact relation
is positive [Library | PREVALENCE] —, [Migrate] (see Figure 2)
as a high prevalence of a library usually gives rise to
alternative implementations of the required functionality.
If the impact relation is negative, the mapping is turned
around: low — good, medium — satisfactory, high — bad. A
high [Library,System | ENTANGLEDNESS], for example, results
in a bad effect on the activity understand as the relation
is negative: [System, Library | ENTANGLEDNESS] — [Under-
stand]. A high entangledness tends to cause difficulties to
clearly understand how a library is to be used. Especially
scatteredness of method calls could hamper understanding.

The assessment of a single library thus results in a
mapping between the activities and the {bad, satisfactory,
good} scale. To aggregate the results, we simply count
the occurrences of each value at the leaf activities. Hence,
the assessment of a library finally results in mapping from
{bad, satisfactory, good} — Ny. We deliberately do not
use an aggregation that results in a single number to avoid
comparing apples with oranges.

A. Activities

With one exception, the activities included in the model
are typical for maintenance. The following paragraphs
briefly describe each of them.

Modify: Modifying a system means to change it to e. g.,
fix a bug or add new functionality.

Understand: Understanding a system is critical for all
maintenance tasks. Developers need to understand the struc-
ture and functionality of a system before they can start to
extend or change it.

Migrate: Migration is the process of exchanging a library
with a newer version or a different library. When migrating
a software system to another library, it is usually important
that the new library comprise the same functionality as the
old one.

Entity

<<enumeration>>
Assessment type
Type hasImpact on .
< yp Fact » Impact —>» Activity
manual
automatic

semi-automatic

Attribute

Figure 1. The meta-model of the assessment model.

[eveionll<

-
| T |

Facts | Modify | | Understand| | Migrate | | Protect |

| Distribute |

Entities Attributes

4-‘J<—
Compatibility

S

|ﬂj<_ Entangledness - - -
=

THE

Gaeaac)

Library " bilities <€

Configuration/Extension
Capabilit

Support <

Prevalence

Maturity

TIXIXX

Figure 2. Instantiated assessment model with facts, development activities, and impacts between them.

Protect: Often, security issues surface during the produc-
tive usage of a software system. It is important to fix these
during maintenance, e. g., by migrating the system to an
updated library version.

Distribute: Distributing a software system refers to any
kind of proliferation, such as providing the system open
source on the Internet or shipping the product to a com-
mercial customer. This activity is not directly linked to
maintenance. However, third-party libraries impact it.

B. Metrics

The model quantifies each fact with one or more metrics.
The list of metrics, their description and assignment to facts
are shown in Table I. As an example, to quantify the extent
of vulnerabilities of a library, we measure the number of
known critical issues in the bug database of the library. Some
of the facts cannot be measured directly, as they depend on
many aspects. For instance, the maturity of a library cannot
be captured with a single metric but must be judged by
an expert. We do not employ an automatic, e. g., threshold-
based, mapping from metric values to the {low, medium,
high} scale but fully rely on the experts capabilities.

C. Impacts

Impacts define how facts influence activities. A justifi-
cation for each impact provides a rationale for the impact
which increases confirmability of the model and the assess-
ments based on the model. Note that a fact might have a
positive impact on one activity whilst negatively impacting
another one. Due to space constraints, we give one example
of an impact per activity. The complete list can be obtained
from our website>.

[Extension/Configuration Capability | EXTENT] —4 [Modify]
A high extension capability of an external library positively
impacts modifications, such as adding new features, because
it increases the chances that they can be accomplished with
the same library.

[Extension/Configuration Capability | EXTENT] — [Under-
stand] Whilst high extension capability positively impacts
modifications, it hinders understanding. The reason is the
high complexity caused by the flexibility of extension mech-
anisms which make it harder to understand how to use the
library.

[Extension/Configuration Capability | EXTENT] — [Migrate]
A high capability for extension and configuration inhibits
migration as it is less likely that alternatives provide the
same flexibility.

[Vendor | REPUTATION] —— [Protect] The reputation of the
library vendor positively influences protection of a system,
as a renowned vendor can be expected to provide critical
updates in a timely manner.

[License,System | COMPATIBILITY] —* [Distribute] Character-
istics of third-party libraries also impact the distribution of

3http://www4.in.tum.de/~ccsm/library-usage-assessment/

a system, e. g., low compatibility of licenses can block the
distribution of a system.

IV. ASSESSMENT PROCESS

Our assessment process provides guidance to operational-
ize the model for assessing library usage in a specific
software project. When assessing a real-world project, the
sheer number of libraries require a possibility to address the
most relevant libraries first. Therefore, the first step of the
process structures and ranks the libraries according to their
entangledness with the system. This pre-selection directs
the effort of the second step of our process: the expert
assessment of the libraries. The last step describes how to
generate an assessment report from the aggregated results.

A. Ranking and Pre-selection

In the first step of our assessment process, a set of auto-
matic static analyses are run on the project to be assessed.
Their goal is to objectively determine the degree of en-
tangledness between external libraries and the system. This
step ensures the applicability of our approach in practice, as
extracting these values by hand is unrealistic for real world
projects. Furthermore, the extracted metrics help to identify
the most significant candidates for the expert assessment and
therefore decrease the effort of the system review.

1) Ranking: To rank the libraries according to their
entangledness with the system, we extend work presented
in [5] and determine the following values for all libraries:
The number of total method calls to a library allows to rank
all external libraries according to the strength of their direct
relations the system. The value is computed for the entire
system hierarchy to allow a drill down from system level to
class level. This way, the point of impact can be explored
precisely. This is relevant for cases, in which participants of
the assessment wish to understand in detail where a library
affects their system. The number of distinct method calls to a
library adds information about the implicit entangledness of
libraries and system. It allows to understand how difficult a
migration could be. The granularity of the computed value
is the same as for the total number of method calls. The
scatteredness of method calls to a library describes whether
the usage of the library is concentrated to a specific part
of the system, or scattered across it. The value is computed
based on the package structure of the system (for further
details see Section V). The percentage of affected classes
gives a complementary overview about the impact a migra-
tion could have on the system. This value is independent
from the system structure.

The results of these analyses are presented as an HTML
document, which provides the possibility to inspect the raw
data, as well as detailed insights via the drill-down. The
data for each metric is presented in a tabular way with the
libraries ordered descendingly according their scores.

Table T
FACTS AND ASSOCIATED METRICS OF ASSESSMENT MODEL

Fact Metric

Description

[Support | EXTENT] Expert assessment

Availability of support and training

Headcount

[Vendor | sizE] Sales Volume

The number of contributors is determined e. g., from the vendor’s website
The sales volume is determined e. g., from the vendor’s website

[Vendor | REPUTATION] Expert assessment

Reputation as perceived by an analyst/domain expert

[License | PRICE] Price

Price for a redistribution license

#Books
#Google Hits
#Job Advertisements

[Library | PREVALENCE]

Number of search results on Amazon
Number of search results on Google
Number of search results on jobpilot.de

[Library | MATURITY] Expert assessment

Development status (e. g., development, inactive, stable)

[API | sizE] #API types

Number of types listed in the Javadoc

[Vulnerabilities | EXTENT] #Known critical issues

Number of security issues in the bug database

[Extens./conf. capabilities | EXTENT] Expert assessment

Availability and characteristics of extension and configuration features

#API calls

#Distinct API methods

% Affected classes
Scatteredness of API calls

[Library,System | ENTANGLEDNESS]

Number of API method calls

Number of distinct API methods called

Fraction of classes in the system with API method calls

Degree of scatteredness of API calls regarding the package structure

Expert assessment

[Library,System | ADEQUACY] %API Utilization

How well does the actual use correspond to the intended use
Fraction of API methods that are actually used

[Library,Developers | FAMILIARITY] Avg. #years of experience

Developers are interviewed or their CVs are consulted

[License,System | COMPATIBILITY] Expert assessment

Analysis of license terms, e. g., by legal expert

2) Pre-selection: Under ideal circumstances, all libraries
should be assessed in full detail — however, we are aware
that in practice the sheer number of libraries and the limited
resources will make this unrealistic. Therefore, we propose
to use the results of the automated analyses as the basis for
a pre-selection of libraries: the union of the first N libraries
in each category are candidates for detailed inspection and
subjected to an expert assessment®.

B. Expert assessment

Our model guides the expert during the assessment pro-
cess. The automated analyses have provided the information
which can be extracted from the source code. The expert
now needs to evaluate the remaining metrics. For this, he
or she requires detailed knowledge about the project and
its domain. Furthermore, detailed information about the
libraries needs to be researched.

In practice, some library characteristics, such as incom-
patible licenses or security issues might be an exclusion
criterium for libraries. If the expert is aware of such criteria,
we advise them to assess them for all the libraries of the
project. Following the metric evaluation, the expert needs to
map the results to the scale {low, medium, high}. According
to the impact relationships in Figure 2, these values map to
{bad, satisfactory, good}.

The goal of our approach is to assess the impact each
library has on the activities in our model. Therefore, for each
library we count the number of {bad, satisfactory, good}

4The number N of libraries in the assessment can be determined based
on the resources available to conduct the assessment.

scores it has received for each single activity. In the same
way, the overall score of a library is computed.

C. Report generation

Subsequent to the assessment, a report can be generated
from our model. The structure is the following: a chapter
is dedicated to each external library. The expert enters the
description of the library and fills in the sections generated
from the model categories. At the end of each chapter a
table summarizes the assessment for the respective library
according to the model in Figure 2. At the end of the
report, we include an overview which shows the aggregated
results for all the libraries in the project. For each library,
one row holds the scores per activity in the final table.
Also the overall score of the library is reported. Table II
shows an example. By offering the detailed chapters with
the assessment of all libraries as well as the aggregated view
on the system, we cater to the needs of experienced as well
as inexperienced recipients, who may be consultants, project
managers, or developers. As it highlights potential areas of
concern, the report is supposed to serve as basis for reuse
and maintenance decisions.

V. TOOL SUPPORT

The assessment model includes five metrics that can be
automatically determined by static analyses of the software
system to be assessed. Four of these metrics are used in the
pre-selection phase of our approach to rank the libraries with
regards to their significance to the project. The tool support
for the assessment is implemented in Java on top of the

Table II
EXAMPLE FOR ASSESSMENT AGGREGATION

Library | Modify Understand Migrate Protect Distribute | Overall
m G2 m G2 o | G:0 | G:0 = G5

Library o S:2 o S:1 \ : o S:2 L S:0 2 S:5
B B:l m B:2 M B:3 I B:0 B B:l . B:7

Legend: G: # of good impacts, S: # of satisfactory impacts, B: # of bad impacts

open source software quality assessment toolkit ConQAT?,
a modular toolkit for creating quality dashboards which
integrate the results of multiple quality analyses. The current
implementation is targeted at analyzing the library usage of
Java systems but could be adapted to other programming
languages with a library reuse concept and for which a parser
API in Java is available.

The analysis requires the source and byte code of the
project as well as the included libraries as input. The output
is a set of HTML and data files showing the metric values
for each library in a tabular fashion. The analysis traverses
the abstract syntax tree (AST) for each class in the project
and determines all method calls to external libraries. For
each library, it determines the following five metrics (see
also Table I):

o Number of API method calls

o Number of distinct API method calls

o Percentage of affected classes

o Scatteredness of the API

o Percentage of API utilization

The number of total and distinct API method calls as
well as the percentage of affected classes are aggregated
during the AST-traversal. The scatteredness metric requires
more computation: it expresses the degree of distribution of
API calls over the system structure. API calls within one
package are considered as local. We would expect local
calls for specific functionality, e. g., calls to networking or
image rendering libraries. These would be expected to be
concentrated to small parts of the system. Contrarily, li-
braries providing cross cutting functionality such as logging
would be expected to be called from a large portion of the
system, therefore exhibiting a high scatteredness value. We
compute scatteredness as the sum of the distances between
all pairs of package nodes in the package tree with calls to a
specific API. The distance of two nodes in the package tree
is given by the sum of the distance from each node to their
least common ancestor. It is important to note that since
the scatteredness metric depends on the system structure
(i. e., the depth of the package tree) its values cannot be
compared in a meaningful way across different software
systems. The percentage of API utilization is computed as
fraction between the number of distinct API methods called
and the total number of API methods in the library. The
complete tool support is available as a ConQAT extension

Shttp://www.congat.org/

and can be downloaded as a self-contained bundle including
ConQAT®.

VI. CASE STUDY
A. Study Goal

To show the applicability of our approach, we performed
a case study on a real-world software system of azh
Abrechnungs- und IT-Dienstleistungszentrum fiir Heilberufe
GmbH, a customer of CQSE GmbH (see Section II).

B. Analyzed System

The analyzed system is a distributed billing application
with a distinct data entry component running on a J2EE
application server which is accessed from around 350 fat
clients (based on Java Swing). The system’s source code
comprises about 3.5 MLOC. The system’s files include 87
Java Archive Files (JARS).

C. Study Procedure

We executed our assessment approach (see Section IV)
on the study object and recorded our observations during
the process. We presented our results to the stakeholders in
the company and qualitatively captured their feedback. For
this we used the following guiding questions:

« Does the report contain the central libraries?

o Does the assessment conform to the stakeholders’ in-
tuition?

o Are important aspects missing in the assessment?

o Were parts of the assessment result surprising?

D. Results and Observations

The pre-selection step revealed that out of the 87 JAR
files included by the project files, the system’s source code
directly calls methods from 47. The extent of entangledness
between the system and these libraries differs significantly,
as illustrated in Figure 3(a). For some libraries, only one
method is called while for others, there are several thousand
method calls indicating the difference in importance for the
project. Also the degree of scatteredness varies significantly,
as shown in Figure 3(b).’

Ohttp://www4.in.tum.de/~ccsm/library-usage-assessment/

"Note that the long tail of libraries with only one method call or
scatteredness of 1 or 0 is represented by the blanks in Figures 3(a) and 3(b),
as they are not visible due to the log-scale.

The pre-selection step to determine the most important
libraries returned a set of 20 JARs. In two cases we con-
ceptually merged several individual JARs into one logical
library as they originated from the same in-house project,
which resulted in 10 logical libraries for further analysis.
We then determined for each library all metrics of our
assessment model (see Table I) and evaluated each library.
The aggregated result of the library usage assessment for the
studied software system is shown in Table III.

After a feedback cycle with the CQSE consultant we
learned that Spring would have been expected as a central
library but was missing in our results. The reason for this is
that Spring is a dependency injection framework, in which
the framework code mainly calls the user’s code and thus the
source code does not contain many API method calls. This
is a threat to the internal validity of our analysis (see Section
VIII). After the consultant’s feedback, we added Spring to
the list of libraries and performed a detailed assessment for
it. The result is highlighted in grey in Table III.

The complete assessment process for a single library took
around 20-60 minutes. Without pre-selection, even in the
best case, the assessment of all 87 included libraries would
have required 29 person hours. In contrast, the assessment of
the significant libraries identified by pre-selection decreased
the effort to approximately 5 person hours.

E. Interpretation

The results in Table III show a mature style of external
library usage: most assessed libraries include significantly
more positive than satisfactory or negative scores. This is,
amongst others, due to a good choice of libraries as no
immature or insufficiently supported libraries are included.
Another reason for the good results is the high familiarity
of the developers with the libraries that helps to overcome
potential problems. Also, the support for most libraries is
excellent, which positively influences most activities.

The libraries with the best scores are JFormDesigner and
Jasper-reports, with 22 and 20 good scores respectively.
The libraries introducing most risk are Drools (9xbad),
Jai_codec (9xbad) and azh-libraryl (10xbad). Depending
on the activities, there is a lot of variation concerning the
scores of the libraries. The libraries score very heteroge-
neously for Modify, Understand and Migrate. Contrarily,
Protect and Distribute are well supported. The only excep-
tion is Jasper-report as the vendor’s commitment to an open-
source distribution model is not entirely clear.

F. Stakeholder Feedback

The consultant of the CQSE reported that he perceives the
automated pre-selection process as highly beneficial because
it allows a selection of central libraries based on quantitative
data. As not all libraries can be assessed in a typical audit
this selection is essential; however, up to now, it was often
based on educated guesses and opinions of the architects and

developers. The metric-based pre-selection helps to make the
selection more objective. This is particularly important as
quality audits often stir emotions and, hence, all aspects of
the audit must withstand fierce criticism and may not appear
to be subjective.

Regarding the questions formulated in Section VI-C, the
CQSE consultant replied that the report contains the central
libraries with the exception of the Spring framework, as
discussed above. The results conform to the consultant’s
intuition as he did not expect the system to depend on
inadequate libraries. However, one aspect missing in the
assessment is a peculiarity of the Drools library: Drools
is not only a library but also defines its own rule de-
scription language. Central parts of the assessed system
are implemented in this language. Hence, Drools must be
considered more central than normal libraries. This is not
directly reflected in the assessment. The analysis returned
some surprising results w.r.t. to the centrality of the libraries.
For example, the imaging library JAI was not considered by
the consultant before it was pointed out by the analysis.

The software engineer of azh reported that the most
important libraries of the project were selected. In general,
the results conformed to the developer’s intuition. However,
in some cases more details of the assessment would be
helpful. According to the engineer, all important issues
were evaluated in our model. In addition, explicit statements
about the future viability of the libraries or alternatives to
the previously used libraries would be interesting. Parts of
the assessment result were surprising, in particular that the
libraries JFormDesigner and azh-library2 were among the
most central libraries. Overall, the positive outcome of the
assessment corresponded to the engineer’s perception of the
state of library usage on the project.

VII. DISCUSSION

The system analyzed in the case study employs a con-
siderable number of software libraries. While some of them
play a central role and thus have a significant impact on
the maintenance and further evolution, others are of lesser
importance. Our ranking step in the assessment process was
able to identify these important libraries, allowing to focus
further investigation on their usage adequacy. Supported by
the assessment model, we identified a number of metrics for
each of the identified libraries leading to a comprehensive
usage assessment per library. The assessment shows which
development activities are influenced and thus allows to
identify problematic library usage at a glance. However,
proposing one-size-fits-all solutions for addressing the issues
uncovered by the analysis does not seem adequate; the
possible actions are highly dependent on the project context
and the maintenance strategies. Our findings rather serve the
purpose to create awareness and provide the information for
decision making.

100000 1000000

m4T™MC M Scatteredness
= #DMC
100000
10000
10000
1000
1000
100 -
100
10
! 10 | |
1 12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 1.2 3 4 5 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
(a) The distribution of total vs. distinct method calls. (b) The distribution of scatteredness.

Figure 3. Result distribution for total and distinct method calls and scatteredness for each JAR file used by the system.

Table III
AGGREGATED VIEW OF THE ASSESSMENT RESULTS

Library || Modify Understand

=
(5]
=
&
LS

| Protect | Distribute [| Overall

= G:2 = G:3 = G:2 == G:5 = G:2 | — G:14
Castor O S:2 (] S:3 [S:3 (] S:2 | S:0 | E— S: 10
] B:1 [] B:1 [] B:1] B:1 | B:0 [] B:4
= G:2 = G:4 = G:3 | — G:6 = G:2 | —— G:17
Log4j 0 S: 1 0 S: 1 0 S: 1 | S:0 | S:0 = S:3
-] B:2 [] B:2 -] B:2 [} B:2 | B:0] B:8
Jasper- == G:4 == G:4 == G:4 G [G:1 e G20
| S:0] S:1 | S: 0] S:1 O S: 1 [S:3
reports] B:1 m B:2 -] B:2 | B:0 | B:0 — | B:5
= G:2 /= G:3 = G:2 = G:4 = G:2 | —— G:13
Drools] S: 1] S:1] S:1 (] S:3 | S: 0 —J S: 6
- | B:2 [| B:3 [| B:3] B:1 | B:0 I B:9
azh- = G:2 = G:2 = G:2 = G:4] G:2 | E— G:12
.] S:1] S:2] S:1 O S:2 | S:0 — S:6
library1 = B:2] B:3] B:3] B:2 I B:0 [—— | B:10
azh- == G:4 = G:3 = G:3 == G:5 = G:2 | —— G:17
| S:0 | S: 0 | S: 0] S:2 | S:0 O S:2
library2 [B:1 [B:4 m B:3 i B:1 I B:0 —— B:9
o G:1 = G:3 = G:2 = G:3 = G:2 | E— G:11
Quartz O S:2 — S:3 — S:3 [S:4 | S:0 | E— S: 12
] B:2 [] B:1 [] B:1] B:1 | B:0 [B:5
JForm- = G:4 == G:5 = G:4 mm G = G:2 e Gi22
X | S:0 | S:0 | S: 0 | S: 0 | S:0 | S:0
Designer] B:1 m B:2 -] B:2 [} B:1 | B:0 I B:6
= G:2 = G:4 = G:3 = G:4 = G:2 | —— G:15
Jai_codec | S:0] S:1] S: 1 O S:2 | S:0 — S:4
[B:3 [] B:2 -] B:2 [B:2 | B:0 I B:9
= G:2 = G:4 = G:3 | — G:6 = G:2 | —— G:17
Ant O S:2] S:1] S:1] S: 1 | S: 0 — S:5
] B:1 " | B:2 m B:2] B:1 | B:0 | B:6

Legend: G: # of good impacts, S: # of satisfactory impacts, B: # of bad impacts

An interesting question is what is considered as an exter-
nal library. For instance a library produced by a different
department within the same company may be either consid-
ered internal or external. Another central issue is what entity
is considered a library. The technical structuring imposed
by JAR files may not map to what is considered a logical
reusable library. More relevant are factors like provider and
release cycle. For an assessment with the proposed model,
this has to be defined depending on the specific context in
a project. During the discussion of the results, it became
apparent that weights for facts would be useful to tailor the
model to a specific project context.

VIII. THREATS TO VALIDITY
A. Internal Validity

The assessment model was created based on CQSE’s
experience with software quality assessment and software
development. We do not know how complete the model
is in terms of aspects influencing library usage. However,
due to the experience from CQSE GmbH in assessing
technology usage in diverse and large industrial projects
we are confident that we covered the most central influence
factors.

The ranking of the libraries regarding their significance
for the including project is based on static analysis met-
rics taking into account method calls to external libraries.
This means that libraries that are indirectly used via other
libraries are not considered in the assessment. However, the
automated analysis produces a dependency graph of all JAR
files including transitively referenced JARs. This allows an
assessor to manually identify additional central libraries for
detailed assessment.

In addition, reuse can also occur by other means such as
subclassing which is typically used in frameworks using a
dependency injection mechanism (e. g., Spring). Moreover
the analysis cannot detect method calls via the Java Re-
flection mechanism. In the future, parts of these limitations
could be addressed with further static and dynamic analyses.

B. External Validity

Our case study was restricted to a single commercial
software system written in Java. We do not know how our
findings transfer to software built on other programming
ecosystems besides Java. Especially w.r.t. the availability of
third-party libraries, we expect major differences.

We are convinced that both the assessment model and
the assessment approach have a good applicability to other
programming platforms for which a rich variety of reusable
libraries exists. More extensive case studies are required to
provide evidence this for hypothesis.

IX. RELATED WORK
We relate our approach to the fields of analysis of third-
party library usage, architecture analysis and software qual-
ity assessment.

A. Analysis of Third-Party Library Usage

In [5], we proposed an approach to determine the degree
of dependence between a software project and its third-
party libraries in order to support decision making in various
use cases during software maintenance. The focus of this
previous work was to quantify library reuse while in this
paper we present an assessment model which defines what
constitutes adequate reuse.

Klatt etal. [6] suggested an approach to identify the
impact of evolving third-party components on long-living
software systems. They use a white-box impact analysis
which requires access to the third-party source code and
combined it with data from bug trackers and quality analyses
on the third-party code. In contrast to our approach, the
authors do not provide an explicit model defining the impacts
of library usage characteristics to development activities.

Kotonya and Hutchinson [7] suggested an approach that
helps developers understanding the impact of change in
commercial off-the-shelf (COTS) software components em-
ployed in a project. Contrarily to our approach, they rely on
a COTS component-oriented development process and focus
on the more specific use case of change impact analysis.

Raemaekers etal. [8] proposed an approach to automati-
cally assess the risk imposed by third-party library usage
in software projects. They measure the usage frequency
of third-party libraries in a corpus of open source and
commercial software systems. The risk assessment is based
on the assumption that an uncommon, i. e., infrequently used,
libraries expose a higher risk compared to a library that
is frequently employed by software projects. In contrast to
our approach, the authors have a very general heuristic for
assessing the risk of library usage. We provide a compre-
hensive model taking multiple factors of libraries and their
usage into account.

Limmel etal. [9] analyzed API usage in 1,476 open
source Java projects. They determined the API usage foot-
print of the projects, in terms of the number of included
libraries and the number of (distinct) API methods called
from the projects’ code. Contrarily to our approach, the
authors focus on the extent of API usage and do not take
into account other characteristics of the library and its usage.

B. Architecture Analysis

Architecture analysis approaches aim at evaluating a soft-
ware system with regards to its internal structure.

The software architecture analysis method (SAAM) pro-
posed by Kazman etal. [10] is an approach for a scenario-
based evaluation of software architectures. The method
involves describing activities that have to be supported by
the software system, prioritizing them, and assessing how
well the architecture facilitates them.

The architecture tradeoff analysis method (ATAM) [11] is
an approach for evaluating a system’s architecture with re-
spect to competing quality characteristics (e. g., modifiability

vs. performance). The goal is to to mitigate risks of archi-
tectural decisions, ideally early in the development cycle.
Potential architectural alternatives are analyzed and a risk
mitigation is used to drive refinements of the architectures.

Thus, architecture analysis approaches offer a general
framework for the evaluation of principal architectural de-
cisions. In contrast, the proposed library usage assessment
approach provides a detailed model of the influence of
library usage on maintenance activities.

C. Software Quality Assessment

Software quality assessment methods supported by an
explicit quality model, such as Quamoco [12] or Squale [13],
use the same principal approach as our method. Attributes
of the system and their impacts on quality characteristics are
explicitly modeled according to a well-defined meta-model.
The model is operationalized in the automated assessment
which analyzes a concrete software system with regards to
the modeled quality attributes. However, these models do not
take into account aspects originating from third-party library
usage. In contrast, our approach is specifically targeted at
these aspects and is thus complimentary to these approaches.

X. CONCLUSION AND FUTURE WORK

Despite their pivotal role in modern software development
and their impact on maintenance, third-party libraries tend
to be overlooked in quality assessments of software systems.
We presented a structured approach to assess the adequacy
of library usage in software projects. Based on industrial
experience, we provided a lightweight assessment model
as well as an assessment process, including tool support
and guidance for pre-selecting candidates for inspection. We
reported results of a case study applying our approach to
an industrial system. The results indicate that our approach
gives a comprehensive overview on the external library
usage of the analyzed system. It outlines which maintenance
activities are supported to which degree by the employed
libraries. Furthermore, the semi-automated pre-selection al-
lowed for a significant reduction of the time required by the
expert assessment.

Currently an impact between an attribute and an activity
is either positive or negative. As a future extension, we plan
to extend our meta-model with weights for impacts. This
allows for a more fine-grained modeling of the individual
impact relationships. Moreover, we want to include custom
aggregation functions to allow for a custom weighting in
order to emphasize the impact of individual attributes re-
garding the overall assessment result. A further goal is to
increase the automation of the current assessment.

CQSE decided to employ the presented approach in future
audits of library reuse. This allows us to collect more data
and to evaluate our approach with software from different
domains and programming languages.

ACKNOWLEDGEMENTS

We thank the Google Research Awards Program for
supporting our research and the azh GmbH for participating
in the study.

REFERENCES

[1] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel,
and M. Irlbeck, “On the Extent and Nature of Software Reuse
in Open Source Java Projects,” in ICSR’11, 2011.

[2] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. Gi-
rard, “An activity-based quality model for maintainability,” in
ICSM’07, 2007.

[3] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a
framework for software measurement validation,” Software
Engineering, IEEE Transactions on, vol. 21, no. 12, pp. 929—
944, 1995.

[4] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner,
“Software quality models: Purposes, usage scenarios and
requirements,” in WOSQ ’09, 2009.

[5] V. Bauer and L. Heinemann, “Understanding API Usage
to Support Informed Decision Making in Software Mainte-
nance,” in CSMR 2012, 2012.

[6] B. Klatt, Z. Durdik, H. Koziolek, K. Krogmann, J. Stammel,
and R. Weiss, “Identify impacts of evolving third party
components on long-living software systems,” in CSMR’12,
2012.

[7] G. Kotonya and J. Hutchinson, “Analysing the impact of
change in COTS-based systems,” COTS-Based Software Sys-
tems, pp. 212-222, 2005.

[8] S. Raemaekers, A. van Deursen, and J. Visser, “An analysis
of dependence on third-party libraries in open source and
proprietary systems,” in CSMR’12, 2012.

[9] R. Lammel, E. Pek, and J. Starek, “Large-scale, AST-based
API-usage analysis of open-source Java projects,” in SAC’11,
2011.

[10] R. Kazman, L. Bass, M. Webb, and G. Abowd, “SAAM:
A method for analyzing the properties of software architec-
tures,” in ICSE’94, 1994.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaft, H. Lipson,
and J. Carriere, “The architecture tradeoff analysis method,”
in ICECCS’98, 1998.

[12] S. Wagner, K. Lochmann, L. Heinemann, M. Klis, A. Tren-
dowicz, R. Plosch, A. Seidl, A. Goeb, and J. Streit, “The
quamoco product quality modelling and assessment ap-
proach,” in ICSE’12, 2012.

[13] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse,
H. Wertz, J. Laval, F. Bellingard, and P. Vaillergues, “The
squale model—A practice-based industrial quality model,” in
1CSM’09, 2009.

