Regression Test Selection of Manual System Tests in Practice

Elmar Juergens, Benjamin Hummel

Technische Universitit Miinchen
{juergens, hummelb]}@in.tum.de

Abstract—Regression testing analyzes whether software
maintenance has inadvertently broken existing functionality.
Since it is costly—especially for manual testing—it is typically
limited to a subset of test cases. Since impact analysis of code
modifications on test cases is far from trivial for real world
software, regression test selection is hard. However, if it misses
affected test cases, bugs may remain unnoticed. In response,
the research community has proposed numerous test selection
approaches. Regression test selection is especially relevant for
manual tests, since their execution costs limit the number of
tests that can be executed in practice. However, evaluations
of existing work focus on automated tests. Its applicability to
manual tests is thus unclear. We present an industrial case
study that demonstrates the challenges that regression test
selection techniques face when applied to manual system tests.
Furthermore, we sketch how, given these challenges, manual
regression test selection can be improved.

Keywords-regression test selection, software maintenance

I. INTRODUCTION

Wincor Nixdorf produces embedded systems such as
ATMs, deposit systems or retail terminals. As part of the
quality assurance process, Wincor Nixdorf performs system
tests to validate their correct behavior. Since they involve
interaction with the embedded systems, e.g. PIN entry and
cash withdrawal during an ATM test, they are performed
manually. Manual testing is costly—the system test suite
for a single product, which is performed before each major
software release, takes several person months to execute.

If a software defect occurs in the field, a repaired version
of the software must be delivered rapidly. A fix for a known
defect can, however, introduce new defects. To prevent
new defects from being released, Wincor Nixdorf performs
regression testing. Unfortunately, it is impossible to execute
the entire system test suite: it would be too costly and leave
the faulty version in production for too long. Test engineers
thus select a subset of all tests for regression testing.

Regression test selection is hard. System tests are written
on the level of application features; fixes are written on the
level of source code. The detailed interplay between tests and
code, however, is almost impossible to determine manually.
Manual regression test selection thus necessarily involves
a certain amount of guesswork. Given the importance of
regression testing, how can we better support test engineers
during regression test selection?

Florian Deissenboeck, Martin Feilkas

CQOSE GmbH
{deissenboeck, feilkas]@cgse.eu

Christian Schlogel, Andreas Wiibbeke

Wincor Nixdorf International GmbH
christian.schloegel @wincor-nixdorf.com
andreas.wuebbeke @wincor-nixdorf.com

The research community has proposed several approaches
for selective regression testing (SRT) [1], [2], [5], [6],
[8]. SRT determines which test executions are potentially
affected by a given modification (e. g., a fix) to the system,
thus supporting regression test selection.

While SRT approaches are applicable to manual tests in
principle, existing empirical evaluations are limited to auto-
mated tests [1], [4]. Automated and manual tests, however,
differ in several aspects. First, automated tests often focus
on small areas of code that implement a single feature (cf.,
unit tests), whereas manual system tests typically cover large
parts of the system in an end-to-end fashion. This can affect
the savings achievable through SRT techniques. Second,
an automated test driver always executes tests in the same
fashion. In contrast, different testers might perform the same
manual test case slightly differently, causing it to execute
different code paths. Given these differences, how well can
SRT techniques be applied to manual tests?

Research Problem: Evaluations of selective regression
testing (SRT) focus on automated tests. It is unclear how
well they can support test selection for manual system tests.

Contribution: We present an industrial case study that
analyzes applicability of SRT techniques to manual system
tests. We conclude that, in practice, the expected reductions
in test suite size of fully automated SRT are insufficient.
Furthermore, we outline a semi-automated approach that can
achieve further reductions.

II. RELATED WORK

Numerous SRT approaches have been proposed [2], [3],
[5]-[9]. They comprise three general steps. First, test execu-
tion traces are recorded that show which test cases exercise
which code fragments. Second, dependencies between code
fragments (e. g. due to inheritance or shared global state) are
extracted. Third, all test cases that exercise modified code
fragments, or code fragments that (transitively) depend on
modified code fragments, are marked as affected test cases.
The specifics of each step, e. g. the tracing granularity [1] or
dependency extraction [2], [5], [8], vary across approaches.
So called safe SRT approaches provide a guarantee that
the set of selected test cases comprises all error-uncovering
ones. We employ an SRT technique that marks a test case
as affected, if at least one of the methods it covers was
modified. It serves as a lower bound for safe approaches.

Several researchers have evaluated SRT approaches.
In [6], Rothermel and Harrold present a framework for
qualitative comparison of SRT techniques and stress the
importance of empirical comparisons. In [1], Bible etal.
compare two tools that implement different SRT techniques
on a set of small programs using a suite of automated tests.
In [4], Graves et al. use the same small programs to compare
three different SRT techniques. Furthermore, in [3], [7],
[8] the authors evaluate the SRT technique they propose
using automated tests. In contrast, this paper studies the
applicability of SRT techniques to manual system tests. In
addition, our study object is several orders of magnitude
larger than those of previous studies [1], [3], [4], [7].

III. CASE STUDY
A. Research Questions

We analyze the following research questions to better
understand the applicability of SRT to manual system tests:

RQ 1: How large is the set of test cases that SRT deter-
mines for past fixes?

SRT techniques are conservative. The set of selected test
cases can thus be significantly larger than the set of test
cases that actually uncover errors. This question analyzes
the reduction achievable through SRT on modifications that
were performed to the system in the past.

RQ 2: How large is the set of test cases that SRT selects
in general?

The past behavior might not be representative, or future
fixes could simply be of a different nature. This question
thus analyzes the reduction that can be expected in general.

RQ 3: Are test cases deterministic?

SRT approaches assume that test cases always execute the
same code. In practice, system test cases are often under-
specified—full specification is often unfeasible. Missing
information can, however, be handled differently by different
testers. As a consequence, tests exercise different paths
through the code. This question quantifies the consequences
of under-specification on test determinism in practice.

RQ 4: How stable is coverage during system evolution?

To achieve coverage of modified code, testers need to
execute test cases that exercise the modified methods. This
question analyzes if coverage on a previous system version
is a good indicator for coverage after modification.

B. Study Object

We use a system from Wincor Nixdorf as study object.
Wincor Nixdorf is an international company producing IT
solutions for the banking and retail industry. Its solutions
are integrated products that comprise both hardware and
software. The company has more than 9.000 employees
and is market leader for cash handling and cash cycle
solutions. The analyzed system is a client-server application
that comprises several MLoC of Java code. In production,

Methods covered by all traces (set A)
Methods covered by a specific trace

Methods covered by some of the traces (set B)

Figure 1: The sets used in RQ3 and RQ4

the server runs in a cluster that is accessed by several
thousand client systems.

The system consists of the main process of the application
server and several auxiliary processes. The application server
itself can span multiple threads. The traces used in all re-
search questions consist only of methods executed in threads
related to HTTP requests and CORBA communication (with
the client systems, e. g. an ATM) to filter out methods related
to background tasks that are scheduled at certain intervals.

C. Study Design and Procedure

We analyze several consecutive system snapshots from
a development branch created for bug fixing, called S; to
Sio here. In addition, we use a set of test cases T =
{T1,...,Ts3} from the set of regression tests used at Wincor
Nixdorf. We created a method-level trace for a manual
execution of each of these test cases using S;. For test
cases 17 to 15, we also created multiple traces for the three
snapshots S1, S5, and S1s.

As a measure for RQ1, we compute which percentage of
the test case results for S is still valid after the modification
that produced the next snapshot. For this, we check for each
snapshot and test case, whether any of the methods that
were changed in the snapshot (compared to the previous one)
are contained in the trace. Any such change can potentially
change the outcome of the corresponding test.

To answer RQ2, we compute the expected number of
invalidated test cases, if i arbitrary methods are changed.
For this, we assume the likelihood of a method change to
be independent of other methods and distributed equally. We
calculate the expected number of affected test cases using a
random sample of 10,000 method sets of size .

For RQ3, we execute each of the first 3 test cases in 1T’
six times, each time creating a trace for it. Each execution
is consistent with the test case description, but varies non-
specified properties, such as the exact steps used to navigate
in the Ul For each of these test cases, we determine the
number of methods executed by all of them (size of set A)
and by only some of them (size of set B) (cf., Figure 1). The
ratio |A|/(]A| +|B|) captures the probability that a method,
which is sometimes covered by a test case, is always covered.
It thus serves as an indicator for test case determinism.

For RQ4, we execute each of the three test cases that were
run on S7 in RQ3 on the snapshots S5 and S12 to produce
three more traces for each test case and snapshot combina-
tion. For each of these combinations, we then calculate the

100

80

60

40

20

selected from covered methods
seIeFted from aI\II methodsI rrrrrrrr

0 10 20 30 40 50
Number of changed methods

Expected value of affected traces in %

Figure 2: Expected number of invalidated tests by number
of changed methods

sets A and B as in RQ3. To measure the stability of both
sets, we compute the number of methods that are still in
these sets for the traces taken from later snapshots.

D. Results and Discussion

For RQ1, we found that only the changes performed in
Se, Ss, and Sg affected methods from any of the test traces.
The methods modified between the other snapshots are not
covered by any of our 53 tests. The changes from S5 to Sg
modified 41 methods (from which 13 were covered by the
tests); to Sg, 12 methods were modified (4 covered); and to
Sy, 40 methods were modified (only 2 covered). From the
perspective of SRT, both the deltas to S¢ and Sg invalidate
the results of 33 of our 53 test cases (about 62%), while the
changes for Sy only affect 3 of the tests (6%).

A plot of our data for RQ2 is shown in Figure 2. The
expected values are given for both the case of picking
methods only from those covered by our traces, and for
picking arbitrarily from al/l methods. To invalidate more than
50% of the test results, only 3 covered methods have to be
changed. This is consistent with the results from the history
analysis, where changing 4 covered methods invalidated
62% of the tests. If not only covered methods are selected,
the 50% mark is reached at 17 changed methods.

The results of RQ1 and RQ2 demonstrate that we cannot
expect SRT approaches to determine a set of regression tests
that is much smaller than the set of all regression tests,
if modifications are not limited to a very small number of
methods. If, e. g., only 10% of all test cases can be executed
within the time window available to test a repair release,
we cannot expect SRT approaches to reliably produce a
sufficiently small set of tests: already for 3 or more changes
to covered methods, we must expect to have 50% or more
of the test cases in the selected set.

The results for RQ3 are summarized in Table 1. For two of
the tests, more than 90% of the methods executed during any
test execution are found in all of them. This also means that

Table I: Sizes of the sets determined in RQ3

test case | |A] Bl [A[/(A[+[B])
T 3692 325 92%
T> 4211 314 93%
T3 1605 3295 33%

Table II: Number of elements staying in the sets A resp. B
during system evolution

S1 — Sk ‘ S1 — Si2
A—-A B—+-B|A—+A B-—B
T 99.1% 63.4% 99.0% 61.5%
T 99.6% 70.4% 98.5% 65.9%
T3 100% 10.0% 99.9% 29.2%

by looking at only one of the execution traces, we potentially
miss up to 10% of methods that might be executed. However,
the results for 73 indicate that the stable fraction can be
significantly smaller than 90%.

Table II shows our results for RQ4. Nearly every method
that was in all traces (set A) for a test case taken on S is
also in all its traces for both later snapshots. Stability for the
set B is much weaker, which confirms the results of RQ3.

The results of RQ3 show that under-specification of
manual tests substantially impacts trace stability. This has
two implications for SRT. First, the fundamental assumption
underlying safe SRT approaches—that the execution path of
the test case through the software is controlled [6]—is thus
violated. This substantially reduces the conclusiveness of the
results of safe SRT for manual tests. Second, we cannot
be sure that a test case that SRT determines as affected
by a modification really traverses the modified code—it
might be part of the methods it does not always visit. This
suggests that, after regression test selection, testers should
trace the execution of the regression tests to make sure that
the modifications have really been covered. If not, additional
test cases may need to be executed.

E. Threats to Validity

Our traces are collected on the level of methods. More
fine grained tracing, e.g. on the level of statements, could
lead to less test cases being selected. However, statement
level tracing has a higher performance impact and can hinder
manual testing. Moreover, we expect the gain of more fine
grained tracing to be small, as [1] shows tracing below the
method/function level only in few cases lead to significantly
better results. On the other hand, we did not use a safe
SRT technique—we, e. g., ignored dependencies implied by
inheritance or the database. Using a safe SRT technique
would increase the number of selected test cases.

For RQ2, we assumed an equal distribution of change
probability over all methods. In practice, the probability will
follow a different distribution, which, however, is not known
a priori. Additionally, we selected methods for a change
set independently from each other, which is not faithful,

T 717 IRIR|RIRRIRIZ17])7)
o A7 IRRZARIA AN AN
== Tests (affected ones shaded)

systema @
¢

Modifications
&

o
ZiZ)ZRINZIR|RRIRRIR
0 O O [O I

Manually reduced test set

\a‘ 4

Figure 3: Trace-guided test case selection

as we expect changed methods to be either technically
or functionally related. Thus, the numbers reported might
be overly pessimistic if we count the number of changed
methods. But they can also be interpreted as a lower bound
when we pick not individual methods but rather entire
changes. For example, 3 changes that affect covered methods
are expected to invalidate more than 50% of the tests.
Finally, the study is limited to a single system written
in Java. Further research is required to understand how it
transfers to other systems or other programming languages.

IV. TRACE-GUIDED TEST CASE SELECTION

If a repaired release must be delivered rapidly, the ex-
pected reductions of SRT are too small. How can we further
reduce the test set size?

We qualitatively investigated this question on several
pairs of consecutive system versions. The later version was
derived from the earlier version through a modification
that inadvertently broke a regression test. On these pairs,
we made two observations. First, when inspecting code
changes between the versions, the software engineers could
make good guesses, which of the affected test cases were
especially likely to uncover introduced bugs. For example, if
a modification to ATM code affected currency handling, test
cases that explicitly deal with different currencies were pre-
ferred. This suggests that knowledge about the modifications
can be used to reduce the set of affected test cases.

Second, when we ran an SRT tool, it suggested test cases
that, at first glance, would not have been considered by the
engineers, since the engineers where unaware that they also
exercised the modified code. An example are ATM update
jobs that (among other things) update currency exchange
rates. This suggests that SRT tools can indicate hidden
system dependencies to the tester.

Based on these observations, we suggest a semi-automated
process (depicted in Figure 3). In the first step, an SRT tool
determines the system modifications and infers the test cases
that are likely to exercise the modified code—as RQ4 shows,
test cases that always covered the modified methods in the
past are good candidates. Second, the software engineers
inspect the modifications and decide, for each test case, if

its execution is likely to uncover a bug that this modification
could have introduced, and that is unlikely to be uncovered
by the test cases already contained in the regression test set.
This approach allows engineers to make conscious de-
cisions about which test cases to include. Entirely manual
regression test selection, as is currently done, faces higher
risks of omissions due to hidden dependencies that are
unknown to the testers. However, future work is required to
show that trace-guided test case selection misses less error-
uncovering test cases than entirely manual test selection.

V. CONCLUSION

We have presented an industrial case study on the appli-
cability of existing SRT approaches to manual system tests.
It demonstrates that, except for very small modifications,
the number of test cases selected by SRT approaches must
be expected to exceed the test effort available to retest a
repair release. Furthermore, the under-specification of man-
ual tests—which cannot be completely avoided in practice—
causes unstable traces that reduce conclusiveness of results
of safe SRT approaches. To compensate these obstacles, we
suggest two strategies. First, to employ a semi-automated
approach that combines SRT output with the knowledge and
experience of test engineers. Second, to trace the execution
of test cases during regression testing to assure that the
modified code fragments have been covered.

ACKNOWLEDGMENTS

We are grateful for support during the study and valuable
input on the project to Thorsten Brinkmann, Bernd Graw,
Andrea Pesch, Robert Panzer, Hubert Segin and Yenal Torun.

REFERENCES

[1] J. Bible, G. Rothermel, and D. Rosenblum. A comparative
study of coarse-and fine-grained safe regression test-selection
techniques. ACM TOSEM, 2001.

[2] V. Channakeshava, V. Shanbhag, A. Panigrahi, R. Sisodia,
and S. Lakshmanan. Safe subset-regression test selection for
managed code. In Proc. of ISEC’08, 2008.

[3] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A system for
selective regression testing. In Proc. of ICSE '94, 1994.

[4] T. Graves, M. Harrold, J. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques. ACM
TOSEM, 2001.

[5] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. Spoon, and A. Gujarathi. Regression test selection
for Java software. ACM SIGPLAN Notices, 2001.

[6] G. Rothermel and M. Harrold. Analyzing regression test
selection techniques. /IEEE TSE, 1996.

[7] G. Rothermel and M. Harrold. A safe, efficient regression test
selection technique. ACM TOSEM, 1997.

[8] D. Willmor and S. Embury. A safe regression test selection
technique for database-driven applications. 2005.

[9] S. Yoo and M. Harman. Regression testing minimization,

selection and prioritization: a survey. Softw. Test. Verif. Reliab.,
2007.

