
Clone Detection in Automotive Model-Based Development

Florian Deissenboeck,
Benjamin Hummel, Elmar Juergens,

Bernhard Schätz, Stefan Wagner
Institut für Informatik

Technische Universität München
Garching b. München, Germany

Jean-François Girard, Stefan Teuchert
MAN Nutzfahrzeuge AG

Elektronik Regelungs- und Steuerungssysteme
München, Germany

ABSTRACT
Model-based development is becoming an increasingly com-
mon development methodology. In important domains like
embedded systems already major parts of the code are gener-
ated from models specified with domain-specific modelling
languages. Hence, such models are nowadays an integral
part of the software development and maintenance process
and therefore have a major economic and strategic value for
the software-developing organisations. Nevertheless almost
no work has been done on a quality defect that is known to
seriously hamper maintenance productivity in classic code-
based development: Cloning. This paper presents an ap-
proach for the automatic detection of clones in large mod-
els as they are used in model-based development of con-
trol systems. The approach is based on graph theory and
hence can be applied to most graphical data-flow languages.
An industrial case study demonstrates the applicability of
our approach for the detection of clones in Matlab/Simulink
models that are widely used in model-based development of
embedded systems in the automotive domain.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Re-
usable libraries, Reuse models; G.2.2 [Discrete Mathe-
matics]: Graph Theory—Graph algorithms

General Terms
Algorithms, Design, Experimentation, Measurement

Keywords
Clone detection, model clone, Matlab/Simulink, data-flow

1. INTRODUCTION
Software in the embedded domain, and especially in the

automotive sector, has reached considerable size: The cur-
rent BMW 7 series, for instance, implements about 270 user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

functions distributed over up to 67 embedded control units,
amounting to about 65 megabytes of binary code. The up-
coming generation of high-end vehicles will incorporate one
gigabyte of on-board software [27]. Due to the large number
of variants in product-lines, high cost pressure, and decreas-
ing length of innovation cycles, the development process in
this domain demands a high rate of (software) reuse. This
is typically achieved by the use of general-purpose domain-
specific libraries with elements like PID-controllers as well
as the identification and use of application-specific elements
like sensor-data plausibilisation. As a consequence of this
highly reuse-oriented approach, the identification of com-
mon elements in different parts of the software provides an
important asset for the model-based development process.

A proposed solution for the increasing size and complexity
as well as for managing product lines is to rely on model-
based development methods, i. e., software is not developed
on the classical code level but with more abstract models
specific to a particular domain. These models are then used
to automatically generate production code1. Especially in
the automotive domain today already up to 80% of the pro-
duction code deployed on embedded control units can be
generated from models specified using domain-specific for-
malisms like Matlab/Simulink [10]. The models employed
here appear highly different from classic C or Java code.
However, they share the common purpose of specifying exe-
cutable programs and can therefore be understood as higher
level programming languages. Hence, it does not surprise
that they exhibit a number of quality defects that are well
known from classic programming languages. One such defect
is the presence of redundant program elements or clones.

Cloning is known to hamper productivity of software main-
tenance in classical code-based development environments
[16, 25]. This is due to the fact that changes to cloned
code are error-prone as they need to be carried out mul-
tiple times for all (potentially unknown) instances of a clone
[1, 19, 20]. Hence, the software engineering community de-
veloped a multitude of approaches and powerful tools for
the detection of code clones [1, 2, 9, 11, 15, 18]. However,
there has been very little work on cloning in the context
of model-based development. Consequently, current knowl-
edge on cloning and its consequences for model-based devel-
opment is limited to anecdotal evidence only. Naturally, this
is also due to lack of clone detection tools for this purpose.

1The term “model-based” is often also used in the context
of incomplete specifications that do mainly serve documen-
tation purposes. Here however, we focus on models that are
employed for full code generation.

Taking into account the economic importance of software
developed in a model-based fashion and the well-known neg-
ative consequences of cloning for software maintenance, we
consider this a precarious situation.

1.1 Problem
The reasons identified for cloning in code-based develop-

ment suggest that cloning is expected to be as much of a
problem concerning maintenance in model-based develop-
ment as it is in code-based development. Additionally, es-
pecially in a production-line oriented development the de-
tection of clones can support the identification of potential
domain-specific library elements, easing the development of
new variants. Unfortunately, there is currently neither em-
pirical data on model cloning nor do tools exists that allow
automatic detection of clones in models.

1.2 Contribution
This paper presents an approach for the automatic detec-

tion of clones in models. The approach is based on graph
theory and hence applies to all models using data-flow graphs
as their fundamental basis. It consists of three steps: pre-
processing and normalisation of models, extraction of clone
pairs (i. e., parts of the models that are equivalent) and clus-
tering of those pairs to also find substructures used more
than twice in the models. Through the application of a
suitable heuristic the approach overcomes the limits of algo-
rithmic complexity and can be applied to large models (>
10,000 model elements) as they are typically found in the
embedded domain.

We demonstrate the applicability of our approach in a
case study undertaken with MAN Nutzfahrzeuge, a German
supplier of commercial vehicles and transport systems. Here
we implemented our approach for the automatic detection
of clones in Matlab/Simulink/TargetLink models as they are
widely used in the automotive domain.

1.3 Results and Consequences
Our approach showed in the case study that there are

clones in typical models used for code generation. In the
analysed models with over 20,000 elements, 139 clone classes
were found which affect over a third of the total model el-
ements. By manual inspection a significant share of them
were classified as relevant. Moreover, the case study shows
that it is feasible to analyse models for clones. Our ap-
proach proved to be applicable to industry-relevant model
sizes. Hence, it can be used to prevent the introduction of
clones in models and to identify possible model parts that
can be extracted into domain-specific intellectual-property
library to support a product line-like development.

1.4 Outline
The next section summarises existing work about the im-

pact of code cloning on software maintenance. Section 3
introduces Matlab/Simulink, which is widely used in the em-
bedded domain, to illustrate cloning issues in model-based
development. Then we explain our approach and present
the detection algorithm in Section 4, followed by results for
application of our approach in an industrial case study (Sec-
tion 5). Sections 6 and 7 then outline possible directions for
future research in the detection of model clones respectively
differentiate our work from other publications on similar top-
ics, before we summarise our current work in Section 8.

2. CLONING
In general, code clones are code fragments that are similar

w.r.t. to some definition of similarity [16]. The employed
notions of similarity are heavily influenced by the program
representation on which clone detection is performed and
the task for which it is used.

The central observation motivating clone detection re-
search is that code clones normally implement a common
concept. A change to this concept hence typically requires
modification of all code fragments that implement it, and
therefore modifications of all clones. In a software system
with cloning, a single conceptual change (e. g., a bug fix)
can thus potentially require modification in multiple places,
if the affected source code (or model) parts have been cloned.
Since the localisation and consistent modification of all du-
plicates of a code (or model) fragment in a large software
system can be very costly, cloning potentially increases the
maintenance effort. Additionally, clones increase program
volume and thus further increase maintenance efforts, since
several maintenance-related activities are influenced by pro-
gram size.

In [25], Monden et. al. analyse the change history of a large
COBOL legacy software system. They report that modules
containing clones have suffered significantly more modifica-
tions than modules without cloning, giving empirical indi-
cation of the negative impact of cloning on maintainability.
Furthermore, bugs can be introduced, if not all impacted
clones are changed consistently. In [20] Jiang et. al. report
the discovery of numerous bugs uncovered by analysing in-
consistencies between code clones in open source projects.

Despite the mentioned negative consequences of cloning,
the analysis of industrial and open-source software projects
shows that developers frequently copy-and-paste code [1,
19]. Different factors can influence a programmer’s choice
to copy-and-paste existing code instead of using less prob-
lematic reuse mechanisms: Language limitations are often
the source of duplication, if programmers cannot employ
other reuse mechanisms, as Kim et. al. report in [14]. In
[16], Koschke lists time pressure, insufficient knowledge of
consequences of cloning, badly organised reuse processes or
questionable productivity metrics (lines of code per day)
as possible process-related issues. Kapser and Godfrey [12]
describe situations (e. g., experimental validation of design
variations) in which cloning of source code, despite its known
drawbacks, can be argued to have some advantages over al-
ternative solutions. But even if cloning is applied on pur-
pose, as rarely as it seems to be the case, the ability to iden-
tify and track clones in evolving software is crucial during
maintenance.

Since neither the reasons nor the consequences for cloning
are rooted in the use of textual programming languages as
opposed to model-based approaches for software develop-
ment, we expect cloning to also impact model-based devel-
opment.

3. MODELS FOR CONTROL SYSTEMS
The models used in the development of embedded sys-

tems are taken from control engineering. Block diagrams
– similar to data-flow diagrams – consisting of blocks and
lines are used in this domain as structured description of
these systems. Thus, blocks correspond to functions (e. g.,
integrators, filters) transforming input signals to output sig-

1

Out
Set

1.8

P

2.5

Max

z

1

I-Delay

0.7

I

<

Compare

1

In

1

Out

2

P

z

1

I-Delay

.2

I

z

1

D-Delay
.5

D

1

In

Figure 1: Examples: Discrete saturated PI-controller and PID-controller

nals, lines to signals exchanged between blocks. The descrip-
tion techniques specifically addressing data-flow systems are
targeting the modelling of complex stereotypical repetitive
computations, with computation schemes largely indepen-
dent of the computed data and thus containing little or no
aspects of control flow. Typical applications of those models
are, e. g., signal processing algorithms.

Recently, tools for this domain – with Matlab/Simulink
[22] or ASCET-SD as prominent examples – are used for
the generation of embedded software from models of sys-
tems under development. To that end, these block diagrams
are interpreted as descriptions of time- (and value-)discrete
control algorithms. By using tools like TargetLink [7], these
descriptions are translated into the computational part of
a task description; by adding scheduling information, these
descriptions are then combined – often using a real-time op-
erating system – to implement an embedded application.

Figure 1 shows two examples of simple data-flow systems
using the Simulink notation. Both models transform a time-
and value-discrete input signal In into an output signal Out,
using different types of basic function blocks: gains (indi-
cated by triangles, e. g., P and I), adders (indicated by cir-
cles, with + and − signs stating the addition or subtrac-
tion of the corresponding signal value), one-unit delays (in-
dicated by boxes with 1

z
, e. g., I-Delay), constants (indicated

by boxes with numerical values, e. g., Max), comparisons (in-
dicated by boxes with relations, e. g., Compare), and switches
(indicated by boxes with forks, e. g., Set).

Systems are constructed by using instances of these types
of basic blocks. When instantiating basic blocks, depending
on the block type different attributes are defined; e. g., con-
stants get assigned a value, or comparisons are assigned a
relation. For some blocks, even the possible input signals are
declared. For example, for an adder, the number of added
signals is defined, as well as the corresponding signs.

By connecting them via signal lines, (basic) blocks can be
combined to form more complex blocks, allowing the hierar-
chic decomposition of large systems into smaller subsystems.
Because of this simple mechanism of composition, block dia-
grams are ideally suited for a modular development process,
supporting the reuse of general-purpose control functions
as well as application-domain specific IP-blocks. However,
it also eases a copy-and-paste approach which – combined
with the evolution of product lines typically found with em-
bedded systems and large block libraries – potentially lead
to a substantial number of clones.

4. APPROACH
In this section we formalise the problem of clone detection

in graph-based models and describe an algorithmic approach
for solving it. Basically our approach consists of three steps.
First we preprocess and normalise the Simulink model, then
we extract clone pairs (i. e., parts of the model that are
equivalent), and finally we cluster those pairs to also find
substructures used more than twice in the model.

Since the functionality of data-flow models as used in
Simulink only depends on the link structure and the func-
tionality of the basic blocks, they can be seen as labelled
graphs from a functional point-of-view. Therefore our ap-
proach is described in a graph-based fashion.

4.1 Preprocessing and Normalisation
The preprocessing phase consists of reading the models,

flattening them (i. e., inlining all subsystems; the inverse
function of Create Subsystem), and removing unconnected
lines. This is followed by the normalisation which assigns
to each block and line a label consisting of those attributes
we consider relevant for differentiating them. Two blocks or
lines are considered equivalent, if they have the same label.

Which information to include in the normalisation labels
depends on which kind of clones should be found. For blocks
usually at least the type of the block is included, while se-
mantically irrelevant information, such as the name, the
colour, or the layout position, are excluded. Additionally
some of the block attributes are taken into account, e. g.,
for the RelationalOperator block the value of the Operator
attribute is included, as this decides whether the block per-
forms a greater or less than comparison. For the lines we
store the indices of the source and destination ports in the
label, with some exceptions as, e. g., for a product block the
input ports do not have to be differentiated.

The result of these steps is a labelled model graph G =
(V,E, L) with the set of vertices (or nodes) V corresponding
to the blocks, the directed edges E ⊂ V × V corresponding
to the lines, and a labelling function L : V ∪E → N mapping
nodes and edges to normalisation labels from some setN . As
a Simulink block can have multiple ports, each of which can
be connected to a line, G is a multi-graph. The ports are not
modelled here but implicitly included in the normalisation
labels of the lines.

For the simple model shown in Figure 1 the model graph
would be the one in Figure 2. The nodes are labelled ac-
cording to our normalisation function and the grey portions
of the graph mark the part we would consider a clone.

Gain Sum

Const

RelOp: <

Switch

UnitDelay

Sum

Outport

Inport

Gain

Inport

Gain

UnitDelay

Sum

Gain Sum

UnitDelay

Sum Outport

Gain

Figure 2: The model graph for our simple example model

4.2 Problem Definition
Having the normalised model graph G = (V,E, L) from

the previous section, we can now define what a clone pair is
in our context. A clone pair is a pair of subgraphs (V1, E1),
(V2, E2) with V1, V2 ⊂ V and E1, E2 ⊂ E, such that the
following conditions hold:

1. There are bijections ιV : V1 → V2 and ιE : E1 → E2,
such that for each v ∈ V1 it holds L(v) = L(ιV (v)) and
for each e = (x, y) ∈ E1 it is both L(e) = L(ιE(e)) and
(ιV (x), ιV (y)) = ιE(e).

2. V1 ∩ V2 = ∅

3. The graph (V1, E1) is connected.

For V1, V2 ⊂ V , we say that they are in a cloning relation-
ship, iff there are E1, E2 ⊂ E such that (V1, E1), (V2, E2) is
a clone pair.

The first condition of the definition just states that those
subgraphs must be isomorphic regarding to the labels L, the
second one rules out overlapping clones, and the last one en-
sures we are not finding only unconnected blocks distributed
arbitrarily through the model. Note that we do not require
them to be complete subgraphs (i. e., contain all induced
lines).

We denote by the size of the clone pair the number of
nodes in V1. Then the goal is to find all maximal clone
pairs, i. e., all such pairs which are not contained in any
other pair of greater size.

While this problem seems to be similar to the well-known
NP-complete Maximum Common Subgraph (MCS) problem
(also called Largest Common Subgraph in [8]), it is slightly
different in that we only deal with one graph (while MCS
looks for subgraphs in two different graphs) and we do not
only want to find the largest subgraph, but all maximal
ones. However, as the problem is structurally similar, the
algorithms used for this problem (see, e. g., [4]) are a good
starting point.

4.3 Detecting Clone Pairs
As already discussed, the problem of finding the largest

clone pair is NP-complete2, i. e., we cannot expect to find
an efficient (polynomial time) algorithm for enumerating all
maximal ones which we could use for models containing
thousands of blocks. So we developed a heuristic approach
for finding clone pairs which is presented next.

2We omit the simple reduction from the MCS problem for
brevity here.

We give an outline of our algorithm in Figure 3. It basi-
cally consists of iterating over all possible pairings of nodes
and proceeding in a breadth-first-search (BFS) manner from
there (lines 4-12). During this we manage the sets C of cur-
rent node pairs in the clone, S of nodes seen in the current
BFS, and D of node pairs we are completely done with.

Line 9, which is optional, skips the currently built clone
pair, if we find a pair of nodes we have already seen before.
This was introduced as we found that clones reported this
way are often quite similar to others already found (although
with different “extensions”) and thus rather tend to clutter
the output.

The main difference between our heuristic and an exhaus-
tive search (such as the backtracking approach given in [24])
is that in line 7 we only inspect one possible mapping of the
nodes’ neighbourhoods to each other. To find all clone pairs
we would have to inspect all possible mappings and perform
backtracking. Obviously even using only two different map-
pings quickly leads to an exponential time algorithm, which
will not be capable of handling thousands of nodes.

Thus for a pair of nodes (u, v) we only consider one map-
ping P of their adjacent blocks. Obviously all block pairs
(x, y) of P must fulfil the following two conditions:

L(x) = L(y) (1)

(u, x), (v, y) ∈ E and L((u, x)) = L((v, y))
or

(x, u), (y, v) ∈ E and L((x, u)) = L((y, v))
(2)

As we are only looking at a single assignment out of many, it
is important to choose the “right” one. This is accomplished
by a similarity function which is described in the following
section.

4.4 The Similarity Function
The idea of the similarity function σ : V × V → [0, 1] is

to have a measure for the structural similarity of two nodes
which not only looks at the normalisation labels, but also
the neighbourhood of the nodes. We use the similarity at
two places. First we visit the node pairs in the main loop
in the order of decreasing similarity, as a high σ value is
more likely to yield a “good” clone. The more important
place is in line 7, where we try to build pairs with a high
similarity value. This is a weighted bipartite matching with
σ as weight, which can be solved in polynomial time [26].

For this we define for nodes u, v a function si(u, v), which
intuitively captures the structural similarity of all nodes

Input: Model graph G = (V, E, L)

1 D := ∅
2 for each (u, v) ∈ V ×V with u 6= v ∧ L(u) = L(v) do
3 if {u, v} 6∈ D then
4 Queue Q := {(u, v)}, C := {(u, v)}, S := {u, v}
5 while Q 6= ∅ do
6 dequeue pair (w, z) from Q
7 from the neighbourhood of (w, z) build a list of

node pairs P for which the conditions (1,2) hold
8 for each (x, y) ∈ P do
9 if (x, y) ∈ D then continue with loop at line 2

10 if x 6= y ∧ {x, y} ∩ S = ∅ then
11 C := C ∪ {(x, y)}, S := S ∪ {x, y}
12 enqueue (x, y) in Q
13 report node pairs in C as clone pair
14 D := D ∪ C

Figure 3: Heuristic for detecting clone pairs

which are reachable in exactly i steps, by

s0(u, v) =

{
1 if L(u) = L(v)
0 otherwise

and

si+1(u, v) =

{ Mi(u,v)
max{|N(u)|,|N(v)|} if L(u) = L(v)

0 otherwise

where N(u) denotes the set of nodes adjacent to u (its neigh-
bourhood) and Mi(u, v) is the weight of a maximal weighted
matching between N(u) and N(v) using the weights pro-
vided by si and respecting conditions (1) and (2).

It is easily seen by induction that for every i and pair
(u, v) it holds by induction that 0 ≤ si(u, v) ≤ 1 and thus
defining

σ(u, v) :=

∞∑
i=0

1

2i
si(u, v)

is valid as the expression converges to a value between 0 and
1. The weighting with 1

2i makes nodes near to the pair (u, v)
more relevant for the similarity. For practical applications
only the first few terms of the sum have to be considered and
the similarity for all pairs can be calculated using dynamic
programming.

4.5 Clustering Clones
So far we only find clone pairs, thus a subgraph which is

repeated n times will result in n(n− 1)/2 clone pairs being
reported. The clustering phase described in this section has
the purpose of aggregating those pairs into a single clone
class.

While it seems straightforward to generalise the definition
of a clone pair to n pairs of nodes and edges to get the defini-
tion of a clone class, we felt this definition to be too restric-
tive. For an example consider clone pairs (V1, E1), (V2, E2)
and (V3, E3), (V2, E4). Although there is a bijection between
the nodes of V1 and V3 they are not necessarily clones of each
other, as there might not be the required edges. However, we
consider this relationship to be still relevant to be reported,
as when looking for parts of the model to be included in
a library the blocks corresponding to V2 might be a good
candidate, as it could potentially replace two other parts.

So instead of clustering clones by exact identity (including
edges) which would miss many interesting cases differing

Figure 4: A partially hidden clone of cardinality 3

only in one or two edges, we perform clustering only on the
sets of nodes. Obviously this is an overapproximation which
can lead to clusters containing clones that are only weakly
related. However, as we consider manual inspection of clones
to be important for deciding how to deal with them, those
cases (which are rare in practise) can be dealt with there.

Thus for a model graph G = (V,E, L) we define a clone
class of cardinality n to be a set {V1, . . . Vn}, such that for
every 1 ≤ i < j ≤ n it is Vi ⊂ V and there is a sequence
k1, . . . , km with k1 = i, km = j, and Vkl and Vkl+1 are in a
clone relationship for all 1 ≤ l < m (i. e., there is a clone
path between any two clones). The size of the clone class is
the size of the set V1, i. e., the number of nodes duplicated.

What this boils down to, is to have a graph whose vertices
are the node sets of the clone pairs and the edges are induced
by the cloning relationship between them. The clone classes
are then the connected components, which are easily found
using standard graph traversal algorithms, or a union-find
structure (see, e. g., [5]) which allows the connected compo-
nents to be built on-line, i. e., while clone pairs are being
reported, without building an explicit graph representation.

Though this seems simple enough, there are still two issues
to be considered. One is that while we defined clone pairs
to be non-overlapping, clone classes can potentially contain
overlapping block sets. This does not have to be a prob-
lem, especially as examples for this are rather artificial, but
should be kept in mind. The other issue is the existence of
clone classes which are not completely found due to larger
clone pairs hiding some of the smaller ones. An example of
this can be found in Figure 4, where equal parts of the model
(and their overlapping) are indicated by geometric figures.
The goal would be to find the clone class of cardinality 3
shown as circles. However, as the clone pair detection finds
maximal clones, when starting from nodes in circles 1 and
2, actually the clone pairs consisting of the pentagons will
be found. Similarly the circle pair 1 and 3 is hidden by the
rectangle. So our pair detection would report the rectangle
pair, the pentagon pair, and the circles 2 and 3.

We deal with this issue by checking the inclusion relation-
ship between the clone pairs reported as a final step. In the
example this would discover that the nodes from circle 2 are
completely contained in one of the pentagons and thus there
has to be a clone of this circle in the other pentagon, too.
Using this information (which analogously holds for the rect-
angle) we can also find the third circle to get a clone class
of cardinality 3. Obviously, if there was an additional clone
overlapping circles 2 and 3, we had no single clone pair of
the circle clone class and thus this approach does not work
for this case. However, we consider this case to be unlikely
enough to ignore it.

4.6 Scalability
The time and space requirements for the clone pair de-

tection are depending quadratically on the overall number
of blocks in the model(s). While for the running time this
might be acceptable (though not optimal) as we can just let
the program work in batch mode, the amount of required
memory can be too much to even handle some thousand
blocks.

A simple solution to this is to split the model graph into
its connected components. Then we can independently find
clone pairs within each such component and between each
pair of connected components, which clearly still allows us
to find all clone pairs we would find without this technique.
While this does not help anything in terms of running time,
as still each pair of blocks is looked at (although we might
gain something by filtering out components being smaller
than the minimal clone size we are interested in), the amount
of memory needed now depends quadratically only on the
size of the largest connected component. So if the model is
composed of unconnected sub models (as is the case with
the model used in Section 5) or we can split the model into
smaller parts by some other heuristic (e. g., separating sub-
systems on the topmost level), memory is no longer the lim-
iting factor.

5. CASE STUDY
This section describes the case study, that was carried out

with a German truck and bus manufacturer to evaluate the
applicability and usefulness of our approach.

5.1 Analysed Model
We performed our experiments on a model provided by

MAN Nutzfahrzeuge Group, which is a German-based inter-
national supplier of commercial vehicles and transport sys-
tems, mainly trucks and buses. It has over 34,000 employees
world-wide of which 150 work on electronics and software de-
velopment. Hence, the focus is on embedded systems in the
automotive domain.

The organisation’s development process is supported by
an integrated data backbone developed on the eASEE frame-
work from Vector Consulting GmbH. On top of this back-
bone, a complete model-based development approach has
been established using the tool chain of Matlab/Simulink
and Stateflow as modelling and simulation environment and
TargetLink of dSpace as C-code generator.

The analysed model implements the major part of the
functionality of the power train management system, de-
ployed to one ECU. It is heavily parametrised to allow its
adaption to different variants of trucks and buses. The
model consists of more than 20,000 TargetLink blocks, which
are distributed over 71 Simulink files. Such a file is the typ-
ical development/modelling unit for Simulink/TargetLink
models.

5.2 Implementation
For performing practical evaluations of the detection al-

gorithm, we implemented it as a part of the quality analysis
framework ConQAT [6] which is publicly available as open
source software3. This includes a Java-based parser for the
Simulink model file format which makes our tool indepen-
dent of the Simulink application. Additionally, we developed

3http://conqat.cs.tum.edu/

Figure 5: An example for the visualisation of clones
within Matlab

preprocessing facilities for the TargetLink-specific informa-
tion and for flattening the Simulink models by removing
subsystems that induce the models’ hierarchy. To review
the detection results we extended ConQAT with function-
ality to layout the detected clones and to visualise them
within the Simulink environment that developers are famil-
iar with. The later is done by generating a Matlab script
which assigns different colours to the blocks of each clone.
An example of this is shown in Figure 5.

5.3 Application
To be applicable to real-world models, the general ap-

proach described in Section 4 had to be slightly adapted
and extended. In this section we provide the details that
have been omitted until now.

For the normalisation labels we basically used the type,
and for some of the blocks which implement several simi-
lar functions added the value of the attribute which distin-
guishes these functions (e. g., for the Trigonometry block
this would be an attribute deciding between sine, cosine,
and tangent). Numeric values, such as the multiplicative
constant for gain, were not included in the normalisation,
i. e., were ignored for clone detection, as we were interested
in partial models which could be extracted as library blocks
where such constants could be made parameters of the new
library block. Overall we rather included less information
into the normalisation labels to avoid loosing potentially in-
teresting clones.

From the clones found, we discarded all those consist-
ing of less than 5 blocks, as this is the smallest amount
we still consider to be relevant at least in some cases. As
this still yielded many clones consisting solely of “infrastruc-
ture blocks”, such as terminators and multiplexers, we imple-
mented a weighting scheme. This assigned each block type
a weight, with a default of 1. Those infrastructure blocks
were assigned a weight of 0, while blocks having actually a
functional meaning (e. g., integration or delay blocks) were

 0

 5

 10

 15

 20

 25

 4 8 16 32 64 128 256

N
um

be
r

of
 c

om
po

ne
nt

s

Size of connected component

Figure 6: Size distribution of connected components
in the model (logarithmically scaled in the x-axis)

weighted with 3. The weight of a clone then is defined as
the sum of the weights of its blocks. Clones with a weight
less than 8 also were discarded, which ensures that at least
small clones are considered only, if their functional portion
is large enough.

5.4 Results
Our implementation of the detection algorithm needed 50

seconds on an Intel Pentium 4 3.0 GHz workstation with 1
GB of main memory for parsing the models from Section 5.1
and performing the detection and clustering of clones. About
125 MB of memory was used by the Java virtual machine
during this process, from which the major amount was used
for our rather verbose in-memory representation of the Si-
mulink model and the infrastructure code of ConQAT.

From the 20454 blocks nearly 9000 were removed dur-
ing flattening the model (4314 Inports, 3199 Outports, 1412
Subsystems). The model then consisted of 3538 connected
components of which 3403 could be skipped as they consisted
of less than 5 blocks4. Finally the clone detection was run
on 4762 blocks contained in 135 connected components. The
distribution of component size is shown in Figure 6, with the
largest component having less than 300 blocks. This shows
that processing these components separately definitely can
help in handling large models, by keeping the memory con-
sumption low as outlined in Section 4.6. Additionally, it
seems that a size of 300 is about the number of blocks re-
quired for modelling a single function, while those smaller
fragments are a side effect of splitting the system across mul-
tiple models. When the models are connected, these smaller
parts are likely to be connected to other parts of the model.

We found 166 clone pairs in the models which resulted
in 139 clone classes after clustering and resolving inclusion
structures. Of the 4762 blocks used for the clone detection
1780 were included in at least one clone (coverage of about
37%). As shown in Table 1, only about 25% of the clones
were within one modelling unit (i. e., a single Simulink file),
which was to be expected as such clones are more likely to be
found in a manual review process as opposed to clones be-

4The large quantity of small components is due to comments
in the model (which are themselves blocks) and buttons con-
taining macros for printing and similar functionality, which
were included in many subsystems.

Table 1: Number of Files/Modelling Units the Clone
Classes were Affecting

Number of models Number of clone classes
1 43
2 81
3 12
4 3

Table 2: Number of Clone Classes for Clone Class
Cardinality

Cardinality of clone class Number of clone classes
2 108
3 20
4 10
5 1

tween modelling units, which would require both units to be
reviewed by the same person within a small time frame. Ta-
ble 3 gives an overview on the cardinality of the clone classes
found. As mostly pairs were found, this indicates that the
clustering phase is not (yet) so important. However, from
our experience with source code clones and legacy systems,
we would expect these numbers to slightly shift when the
model grows larger and older.

Table 3 shows how many clones have been found for some
size ranges. The largest clone had a size of 101 and a weight
of 70. Smaller clones are obviously more frequent, which
is because smaller parts of the model with a more limited
functionality are more likely to be useful at other places.

5.5 Discussion
Our results clearly indicate that our approach is capable

of detecting clones and a manual inspection of the clones
showed, that many of the clones are actually relevant for
practical purposes. Besides the “normal” clones, which at
least should be documented to make sure that bugs are al-
ways fixed in both places, we also found two models which
were nearly entirely identical. Additionally some of the
clones are candidates for the project’s library, as they in-
cluded functionality that is likely to be useful elsewhere.
We even found clones in the library (which was included for
the analysis), indicating that developers rebuilt functional-
ity contained in the library they were not aware of. Another
source of clones is the limitation of TargetLink that scaling
(i. e., the mapping to concrete data types) cannot be pa-
rameterised, which leaves duplication as the only way for
obtaining different scalings.

The main problem we encountered is the large number of
false positives as more than half of the clones found are ob-
viously clones according to our definition but would not be
considered relevant by a developer (e. g., large Mux/Demux
constructs). While weighting the clones was a major step

Table 3: Number of Clone Classes for Clone Size
Clone size Number of clones

5 – 10 76
11 – 15 35
16 – 20 17
> 20 11

in improving this ratio (without weighting there were about
five times as many clones, but mostly consisting of irrelevant
constructs) this still is a major area of potential improve-
ment for the usability of our approach.

6. FUTURE WORK
As the application of clone detection on model-based de-

velopment has not been studied before, there is a wide field
of possible further research questions. One major direction
consists of improving the algorithm and the general tech-
niques and ideas involved. The other area complementing
this is to have larger case studies or to apply the algorithm
to related problems to get a better understanding of its
strengths and weaknesses and its general usefulness.

6.1 Algorithmic Improvements
The most obvious source for improvement are the algo-

rithms for detecting clone pairs and for clustering them to
clone classes. While we doubt that there is an efficient exact
algorithm for the former problem, the heuristic might still
have room for improvement. Since the implementation is
publicly available, a comparison of new heuristics with ours
should be easy.

Maybe there are also radically different approaches to
clone detection in models. For example the separation into
a pair detection and a clustering could be avoided. At least
for the MCS problem there are algorithms for finding the
MCS for n graphs [3], although the transfer to our problem
of finding clones efficiently is not obvious.

Another interesting problem would be to find approximate
clones, i. e., parts of the model which are slightly different.
A major part of this would include to define reasonable sim-
ilarity metrics on clones (e. g., number of edge insertions).

However, the main line of improvement in our opinion
is in the area of processing and categorising the detected
clones. Currently many of the clones found are not interest-
ing for the developer as they do not carry enough semantical
meaning, although they are of course clones according to our
definition. While some of this can be handled by fine-tuning
the normalisation and weighting, it might be helpful to in-
clude some graph theoretic ideas. So a clone might be more
relevant if it contains a cycle, which usually indicates some
kind of control loop. This will be part of some larger case
study as indicated in the next section.

6.2 Applications of Clone Detection
Although we consider our case study to be large enough

to evaluate our approach and prove its usefulness, we would
like to apply it to even larger models, maybe from other
vendors in the automotive domain, which would allow some
degree of comparison, or maybe from other domains. With
more practical experience with the algorithm we expect to
be able to answer many of the questions from the previous
section more precisely.

Another interesting direction is the application of clone
detection with a specific goal in mind, such as finding can-
didates for a library or finding clones in a library, where a
developer rebuilt existing functionality. One could also use
it the other way round and build a library of anti-patterns
which includes common but discouraged model constructs
(such as cascading switch blocks). Clones into these pat-
terns then could indicate potential defects in the model.

A different application would be to aid in building product

lines. Both product lines and model-based development are
commonly used or introduced in the industry. Using clone
detection on models of different products could help in de-
ciding whether making a product line out of them is a good
idea, and in identifying the common parts of these models.

Finally we would like to apply clone detection not only
to Simulink models, but other kinds of models, too. As
the algorithm itself is only based on graph theory, most of
the adjustments for adaptation to other models are in the
parsing and preprocessing phase, including normalisation.
Especially for other data-flow based models, as found for
example in the development of digital signal processors, or
similar formalisms, such as models of business processes, the
transfer should be easy to make. However, a long-term goal
of course is the application to completely different models
(e. g., state machines) which are likely to also need a some-
what different algorithm.

7. RELATED WORK
In this section we discuss related work starting with other

approaches in the area of clone detection on models. Then
we cover the more thoroughly studied problem of clone de-
tection in source code, to understand which of the methods
proposed in this field could be applied to arbitrary models.
We conclude with a short overview on related graph theo-
retic problems.

7.1 Model-Based Clone Detection
Up to now, little work has been done on clone detection

in model-based development. In [21], Liu et. al. propose a
suffix-tree based algorithm for clone detection in UML se-
quence diagrams. They exploit the fact that parallelism-free
sequence diagrams can be linearised in a canonical fashion,
since a unique topological order for them exists. This way,
they effectively reduce the problem of finding common sub-
graphs to the simpler problem of finding common substrings.
However, since a unique, similarity preserving topological or-
der cannot be established for Matlab/Simulink models, their
approach is not applicable to our case.

A problem which could be considered as the dual of the
clone detection problem is described by Kelter et. al. in [13]
where they try to identify the differences between UML mod-
els (usually applied to different versions of a single model).
In their approach they rely on calculating pairs of matching
elements (i. e., classes, operations, etc.) based on heuristics
including the similarity of names, and exploiting the fact
that UML is represented as a rooted tree in the XMI used
as storage format, making it inappropriate for our context.

7.2 Code-Based Clone Detection
A large body of research targets the detection of clones in

source code. For the sake of brevity and comparison with
graph-based clone detection as proposed in this paper, we
classify them by the type of algorithm used to find similar
code fragments. Please refer to [16] for a comprehensive
survey of code clone detection.

Sequence-based clone detection transforms the source code
into a sequence of normalised units. Clone detection is
then performed by searching for common substrings, which
can be efficiently done using suffix trees. Baker [1] and
Kamiya et al. [11] proposed approaches employing tokens
as units, Koschke et al. [17] serialise abstract syntax trees
by pre-order traversal. In general, sequence-based tech-

niques require a similarity-preserving serialisation, which
is not known for general graphs, such as Matlab/Simulink
models.

By characteristic-vector-based clone detection approaches
we summarise those that partition source code into atomic
code fragments, assign vectors to them by some character-
ising function and use a distance metric in vector space to
determine their similarity. Baxter et al. [2] partition the ab-
stract syntax tree into subtrees and compute characteristic
values for them using a suitable hash function. Mayrand et
al. [23] use functions5 as atomic units and compute several
software metrics to yield the characteristic vectors. Jiang
et al. [9] compute characteristic vectors on abstract syntax
trees based on tree patterns. A crucial factor influencing
the results of characteristic-vector-based approaches is the
choice of the partitioning, since these approaches do not
find clones that start in one partition and end in another
partition. A suitable partition for Matlab/Simulink models
would be to compare only single subsystems with each other.
However, as we are also interested in clones distributed over
multiple subsystems or covering only parts of a subsystem,
we could not choose this approach. Also other graph the-
oretic partitions of the model, such as strongly connected
components, will not find all clones considered important.

Graph based clone detection uses graphs as program rep-
resentation containing data- and control-flow information.
Clone detection is then performed by searching for simi-
lar subgraphs. Among the code-based clone detection ap-
proaches, these bear the closest resemblance to the model-
based clone detection approach presented in this paper. In
[15], Komondoor and Horwitz propose a combination of for-
ward and backward program slicing to identify isomorphic
subgraphs in a program dependence graph. Their approach
is difficult to adapt to Matlab/Simulink models, since their
application of slicing to identify similar subgraphs is very
specific to program dependence graphs. In [18], Krinke also
proposes an approach that searches for similar subgraphs
in program dependence graphs. Since the search algorithm
does not rely on any program dependence graph specific
properties, it is in principle also applicable to model-based
clone detection. However, Krinke employs a rather relaxed
notion of similarity that is not sensitive to topological dif-
ferences between subgraphs. Since topology plays a crucial
role in data-flow languages, we consider this approach to be
sub-optimal for Matlab/Simulink models.

7.3 Graph Theory
As we boiled down the problem of detecting clones to a

purely graph theoretic problem in Section 4.2, we will also
briefly cover related work in graph theory here. Proba-
bly the most similar problem to ours, as discussed before,
is the well known NP-complete Maximum Common Sub-
graph problem. An overview of algorithms is presented by
Bunke et. al. [4]. Most practical applications of this prob-
lem seem to be studied in chemoinformatics [28], where it is
used to find similarities between molecules. However, while
typical molecules considered there have up to about 100
atoms, many Matlab/Simulink models consist of thousands
of blocks and thus make the application of exact algorithms
as applied in chemoinformatics infeasible. Furthermore our
problem is slightly different as discussed in Section 4.2.

5in the sense of programming language constructs

8. CONCLUSIONS
Model-based development is more and more becoming a

routinely used technique in the engineering of software in
embedded systems. Especially in some parts of the auto-
motive domain, generating production code from domain-
specific models is a common practise. As these models are
more abstract than previously used C code, they provide var-
ious advantages in productivity and quality. However, also
such models, especially when employed to generate produc-
tion code, grow large and complex just like classical code.
Therefore, classical quality issues can also appear in model-
based development. A highly problematic and well-recognised
problem is that of clones, i.e., redundant code elements.

So far, no approach or tool for clone analysis of mod-
els has been developed. Considering the massive impact of
clones on quality and maintenance productivity, this is an
unsatisfying situation. Moreover, we are in a unique posi-
tion w.r.t. model-based development. We have the opportu-
nity to introduce clone detection early in the development
of large systems and product lines. In systems developed
using classical code approaches, clone analysis often results
in tremendously high amounts of clones so that there are
economical and psychological barriers preventing their sig-
nificant reduction. In model-based development, these large
systems – and especially product-lines – are now emerging.
Clone detection for models, if applied early, can prevent the
development of these overwhelming numbers of clones. This
shows also the two main uses of a clone detection approach
for models: (1) redundant parts can be identified that might
have to be changed accordingly when one of them is changed
and (2) common parts can be identified in order to place
them in a library and for product-line development.

We propose an approach containing an algorithm and a
corresponding tool that can identify clones on models based
on graph structures, including a weight-based filtering heuris-
tic that allows to reduce the output to relevant clones. The
algorithm is scalable enough to be able to handle models that
are common in industry now. The approach was applied
in an industrial case study with MAN Nutzfahrzeuge us-
ing their Matlab/Simulink/TargetLink models. In the case
study, we are able to show that the approach can analyse
industrial size models (20,000 elements) and clones can be
found in such models for both purposes described above. 139
clone classes were found that showed in manual inspection
of a sample of those clones, that a significant share of them
are relevant for the MAN engineers. These clones can now
be more closely inspected to decide how to deal with them
in the future.

We see this approach and the application demonstration
at MAN as an important first step for clone detection in
models. The results can obviously be improved by fine-
tuning the tools and algorithms based on further case stud-
ies. Nevertheless, the results should be encouraging to take
advantage of the current situation in model-based develop-
ment where a lot of redundancy can be avoided by using this
kind of approach early on.

9. REFERENCES
[1] B. S. Baker. On finding duplication and

near-duplication in large software systems. In WCRE
’95: Proceedings of the Second Working Conference on
Reverse Engineering. IEEE Computer Society, 1995.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier. Clone detection using abstract syntax trees.
In ICSM ’98: Proceedings of the International
Conference on Software Maintenance. IEEE Computer
Society, 1998.

[3] D. M. Bayada, R. W. Simpson, A. P. Johnson, and
C. Laurenço. An algorithm for the multiple common
subgraph problem. Journal of Chemical Information
and Computer Sciences, 32:680–685, 1992.

[4] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and
M. Vento. A comparison of algorithms for maximum
common subgraph on randomly connected graphs. In
Joint IAPR International Workshops SSPR 2002 and
SPR 2002, volume 2396 of Lecture Notes in Computer
Science, pages 123–132. Springer, 2002.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT Press
and McGraw-Hill Book Company, 2nd edition, 2001.

[6] F. Deissenboeck, M. Pizka, and T. Seifert. Tool
support for continuous quality assessment. In Proc.
13th IEEE Int. Workshop on Software Technology and
Engineering Practice. IEEE Computer Society, 2005.

[7] dSpace GmbH. TargetLink Production Code
Generation. www.dspace.de.

[8] M. R. Garey and D. S. Johnson. Computers and
intractability. A guide to the theory of
NP -completeness. W.H. Freeman and Company, 1979.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: Scalable and accurate tree-based
detection of code clones. In ICSE ’07: Proceedings of
the 29th international conference on Software
engineering, 2007.

[10] M. Jungmann, R. Otterbach, and M. Beine.
Development of Safety-Critical Software Using
Automatic Code Generation. In Proceedings of SAE
World Congress, 2004.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28:654–670, 2002.

[12] C. Kapser and M. W. Godfrey. ”Cloning considered
harmful” considered harmful. In WCRE ’06:
Proceedings of the 13th Working Conference on
Reverse Engineering, pages 19–28. IEEE Computer
Society, 2006.

[13] U. Kelter, J. Wehren, and J. Niere. A generic
difference algorithm for UML models. In Software
Engineering, volume 64 of LNI, pages 105–116, 2005.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE ’04: Proceedings of the
2004 International Symposium on Empirical Software
Engineering, pages 83–92. IEEE Computer Society,
2004.

[15] R. Komondoor and S. Horwitz. Using slicing to
identify duplication in source code. In Proceedings of

the 8th International Symposium on Static Analysis,
pages 40–56. Springer, 2001.

[16] R. Koschke. Survey of research on software clones. In
Duplication, Redundancy, and Similarity in Software,
Dagstuhl Seminar Proceedings, 2007.

[17] R. Koschke, R. Falke, and P. Frenzel. Clone detection
using abstract syntax suffix trees. In Proceedings of
the 13th Working Conference on Reverse Engineering
(WCRE 2006), pages 253–262, 2006.

[18] J. Krinke. Identifying similar code with program
dependence graphs. In WCRE ’01: Proceedings of the
Eighth Working Conference on Reverse Engineering
(WCRE’01), page 301. IEEE Computer Society, 2001.

[19] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Proceedings of the International Conference on
Software Maintenance, 1997.

[20] E. C. Lingxiao Jiang, Zhendong Su. Context-based
detection of clone-related bugs. In ESEC/FSE 2007,
2007.

[21] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting
duplications in sequence diagrams based on suffix
trees. In APSEC ’06: Proceedings of the XIII Asia
Pacific Software Engineering Conference, pages
269–276. IEEE Computer Society, 2006.

[22] The MathWorks Inc. SIMULINK Model-Based and
System-Based Design - Using Simulink, 2002.

[23] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In ICSM ’96:
Proceedings of the 1996 International Conference on
Software Maintenance, page 244. IEEE Computer
Society, 1996.

[24] J. J. McGregor. Backtrack search algorithms and the
maximal common subgraph problem. Software –
Practice and Experience, 12:23–34, 1982.

[25] A. Monden, D. Nakae, T. Kamiya, S. Sato, and
K. Matsumoto. Software quality analysis by code
clones in industrial legacy software. In METRICS ’02:
Proceedings of the 8th International Symposium on
Software Metrics, page 87. IEEE Computer Society,
2002.

[26] C. H. Papadimitriou and K. Steiglitz. Combinatorial
optimization: Algorithms and complexity.
Prentice-Hall, 1982.

[27] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner.
Software Engineering for Automotive Systems: A
Roadmap. In L. Briand and A. Wolf, editors, Future of
Software Engineering 2007, pages 55–71. IEEE
Computer Society, 2007.

[28] J. W. Raymond and P. Willett. Maximum common
subgraph isomorphism algorithms for the matching of
chemical structures. Journal of Computer-Aided
Molecular Design, 16(7):521–533, 2002.

