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Abstract

Over the past years the usage of container and cloud native applications has grown
significantly. Kubernetes is the most popular option for container orchestration and
deployment at scale. Kubernetes provides a lot of powerful features but many compa-
nies cannot keep up with its rapid evolution and misconfigured Kubernetes manifests
are the consequence. In 2020, StackRox carried out a survey where 69% of the respon-
dents reported that they detected misconfiguration in their Kubernetes environment
over the past 12 months which led to security incidents or issues [45]. It is the most
common vulnerability for Kubernetes emphasizing the need for an approach to detect
misconfiguration in Kubernetes manifests early and automatically. In this thesis, a static
source code analysis tool is implemented which detects misconfiguration in Kubernetes
manifests and Helm charts caused by the violation of best practices. The implemented
tool detects violations of 28 Kubernetes related best practices. The best practices cover
the topics security, resource management, availability and structure. On average, the
tool detects a findings density of 31.87 findings per 1,000 Lines of Code. It is able to
detect misconfiguration in practice, especially in the security context. The implemented
tool produced a false-positive rate of 24.44%. This serves as a first estimate because the
sample size of the assessed findings was insufficient. The most false-positives occurred
due to the use of external software affecting Kubernetes. It made some checks obsolete,
so that they could only produce false-positive findings. In that case, they should be
disabled before the analysis. It is recommended to configure the tool according to the
project’s special circumstances if some best practice violations are tolerated, for example
because of the usage of external software. If the checks which could only produce
false-positives due to project’s special circumstances are excluded, the false-positive
rate for the implemented tool is 2.86%.
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1 Introduction

Cloud native technologies and containerization have raised in popularity over the past
years. The latest survey of the Cloud Native Computing Foundation reports that 84%
of the respondents are using containers in production [18]. Kubernetes does container
orchestration and deployment at scale. It is not the only software for this task, but
the "CNCF Survey 2019" report indicates that 78% of the respondents use Kubernetes
in production [18]. It is a significant development compared to the previous year
where only 58% reported that they are using Kubernetes in production. Kubernetes
establishes itself as dominant player for container orchestration. Kubernetes had its 6th

birthday on June 7th, 2020. Over this relatively short period of time over 90k commits
were contributed to the project [31]. According to GitHub’s report "The State of the
Octoverse", 6.9k contributors worked on the Kubernetes project putting it in 7th place
in the category Number of Contributors to Open Source Projects [20]. These numbers
demonstrate the relevance and the IT community’s interest in Kubernetes.
But the rapid growth of the software also entails risks. The orchestration of containers
and applications is an important part in production. It comprises the scaling of the
applications and security mechanisms like network access control, authorization and
authentication. Kubernetes provides powerful features to handle these aspects but
developers need to understand them and learn how to use them correctly. Keeping
up with the fast pace Kubernetes is evolving can be challenging. Best practices need
to be established and developers need to understand and adhere to them. In their
latest report, StackRox has stated that 69% of the respondents reported that they have
detected misconfiguration in their Kubernetes and container environment causing
security incidents in the past 12 months [45]. It depicts that misconfiguration of
manifests is the most common type of vulnerability in Kubernetes. StackRox’s finding
demonstrates the need for an approach to automatically detect misconfiguration and
best practice violations as early as possible in the development stage.

In this thesis a static source code analysis tool is implemented which analyzes
Kubernetes manifests and detects violations of best practices. In total, 34 current best
practices for Kubernetes configurations are presented. They determine how to set up a
Kubernetes cluster securely and efficiently. Consequently, if they are adhered to, they
prevent misconfiguration in Kubernetes manifests. The best practices are partitioned in
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1 Introduction

the groups Security (16 best practices), Resource Management (7), Availability (7) and
Structure (4). The implemented tool includes checks detecting violations for 26 out of
the 34 best practices. The static source code analysis approach is an effective method
because it can perform the analysis automatically and detects defects early in the
development stage before the changes are deployed in production. The implemented
tool analyzes all Kubernetes manifests within a project. It also detects Helm charts and
locally renders them to a Kubernetes manifest in order to analyze them as well.
The evaluation results show that the average findings density the implemented tool
detects is 31.87 findings per 1,000 Lines of Code. The Security best practice group is
violated most often, but it also is the largest group. The most findings producing checks
are Set Limits (see Subsection 4.2.2), Set Requests (see Subsection 4.2.1) and Use Labels
(see Subsection 4.4.1). Project’s special circumstances can limit the effectiveness of the
implemented tool. Determined special circumstances for the study objects of this thesis
are the toleration of a certain best practice violation and the usage of external software
affecting Kubernetes. One study object requires multiple files providing values to
locally render the Helm chart’s templates to a Kubernetes manifest. As a consequence,
24 of 29 Helm charts could not be rendered locally and thus, could not be analyzed for
best practice violations. The determined false-positive rate for the implemented tool is
24.44%, but 20 out of 22 detected false-positives are caused due to the study object’s
special circumstances. If the usage of external software makes some checks obsolete or
some best practice violations are tolerated on purpose, then the corresponding checks
should be disabled. If the false-positives of these checks are excluded, the tool has a
false-positive rate of 2.86%. However, the false-positive rates are derived from a small
sample size and are only a first estimate. The false-positive rate evaluation must be
replicated on a larger sample size. The evolution of a study object regarding the number
of findings and the project size has been evaluated by executing the implemented tool
on the code base of every commit in the repository’s history. The results show that the
findings density decreases over time. Thus, the implemented tool is the most useful in
the early stage of a project where it detects the highest findings density and supports
the developers to adhere to best practices from the beginning.

The thesis has the following outline. Chapter 2 explains the fundamental terms
and definitions. Chapter 3 discusses scientific work related to this thesis. Chapter
4 presents best practices for Kubernetes partitioned in the four categories Security,
Resource Management, Availability and Structure. In Chapter 5, the implemented tool
is explained. Chapter 6 presents the evaluation of the implemented tool. Chapter 7
depicts approaches for future work improving upon this thesis and Chapter 8 gives the
conclusion of this thesis.

2



2 Terms and Definitions

This clarifies all relevant terms and definitions for this thesis.

2.1 Finding

Finding is a term for quality defects. In the scope of this thesis, it means a violation
of a Kubernetes best practice. A finding contains the description of the quality defect,
the area where the defect is located at in the code and a recommendation how to fix
the quality defect. The finding is categorized as error or as warning depending on the
relevance of the defect.

2.2 Static Kubernetes Manifest

Static Kubernetes manifests are Yaml or Json files which contain specifications of one or
more Kubernetes resources. The Kubernetes resources must be complete and static. The
static Kubernetes manifest’s content is not allowed to depend on templating software
like Helm offers it.

2.3 Kubernetes Resource

The terms Kubernetes Resource and Kubernetes Object are used interchangeably in the
scope of this thesis. On the official Kubernetes website Donnelly, Wang, and Bannister
[16] defined the term Kubernetes Object like this:

Kubernetes objects are persistent entities in the Kubernetes system. Kuber-
netes uses these entities to represent the state of your cluster. [...] A
Kubernetes object is a "record of intent"–once you create the object, the
Kubernetes system will constantly work to ensure that object exists. By
creating an object, you’re effectively telling the Kubernetes system what you
want your cluster’s workload to look like; this is your cluster’s desired state.

3



2 Terms and Definitions

2.4 Namespace

Sayfan [40] defines the term Namespace as follows:

A namespace is a virtual cluster. You can have a single physical cluster
that contains multiple virtual clusters segregated by namespaces. Each
virtual cluster is totally isolated from other virtual clusters, and they can
only communicate through public interfaces.

2.5 Pod

Sayfan [40] has the following definition for Pod:

A pod is the unit of work in Kubernetes. Each pod contains one or more
containers. Pods are always scheduled together (always run on the same
machine). All the containers in a pod have the same IP address and port
space; they can communicate using localhost or standard inter-process
communication. In addition, all the containers in a pod can have access to
shared local storage on the node hosting the pod. The shared storage will
be mounted on each container. Pods are important feature of Kubernetes.
[...] Pods provide a great solution for managing groups of closely related
containers that depend on each other and need to co-operate on the same
host to accomplish their purpose. It’s important to remember that pods
are considered ephemeral, throwaway entities that can be discarded and
replaced at will. Any pod storage is destroyed with its pod. Each pod gets
a unique ID (UID), so you can still distinguish between them if necessary.

2.6 Deployment

On Google Cloud an article about the Deployment resource object in Kubernetes defines
it like this:

Deployments represent a set of multiple, identical Pods with no unique
identities. A Deployment runs multiple replicas of your application and
automatically replaces any instances that fail or become unresponsive. In
this way, Deployments help ensure that one or more instances of your
application are available to serve user requests. Deployments are managed
by the Kubernetes Deployment controller. (Google [22])

4
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2.7 Service

Sayfan [40] gives the following definition for Service in the Kubernetes context:

Services are used to expose some functionality to users or other services.
They usually encompass a group of pods, usually identified by [...] a label.
You can have services that provide access to external resources, or to pods
you control directly at the virtual IP level. Native Kubernetes services are
exposed through convenient endpoints. Note that services operate at layer 3
(TCP/UDP). Kubernetes 1.2 added the Ingress object, which provides access
to HTTP objects. [...] Services are published or discovered via one of two
mechanisms: DNS, or environment variables. Services can be load-balanced
by Kubernetes. But, developers can choose to manage load balancing
themselves in case of services that use external resources or require special
treatment.

2.8 Helm

Helm is the Kubernetes package manager. When using Helm, even the most complex
application can be described in charts. A chart consists of the three key components
template, values and chart file. The chart file itself contains metadata about the chart.
The templates are Kubernetes components like in Kubernetes manifests, but values can
be replaced by placeholders. These placeholders have unique names and they get the
actual values assigned either from the value.yaml file or during run time. Dependencies
can be added manually in the allocated directory or they are only specified in the
requirements.yaml file for Helm v1 or in the Chart.yaml file for Helm v2.

5



3 Related Work

In this chapter, research related to this thesis is introduced. The sources are partitioned
on the basis of the way they relate to this thesis. Sources analyzing code quality of
files for Kubernetes deployment are represented in the first section. The other section
contains related research regarding static source code analysis.

3.1 Code Quality Control for Kubernetes

Scientific research presented in this section target best practices for Kubernetes man-
ifests, Helm charts or container images and most of them evaluate a tool to detect
vulnerabilities with regards to the best practices.
Shamim, Bhuiyan, and Rahman [43] conducted a grey literature review to determine
security practices and systematize that knowledge in order to help practitioners in
securing Kubernetes installations. They analyzed 104 internet artifacts like blog posts
or video presentations containing experiences, recommendations and best practices
for Kubernetes security. As a result, Shamim, Bhuiyan, and Rahman [43] identified 11
Kubernetes security best practices. A similarity to this thesis is that internet artifacts
are considered valuable sources to determine best practices. In contrast to this thesis,
Shamim, Bhuiyan, and Rahman [43] limited their field of research to the security aspect.
They determined best practices at a higher level of abstraction than it is the case in this
thesis where only best practices on code-level are considered. As a consequence, one
security practice identified by Shamim, Bhuiyan, and Rahman [43] is "Vulnerability
scanning" meaning that container images and deployment configurations should be
inspected before they are released to the public. This demonstrates the need for a static
source code analysis tool to detect vulnerabilities and emphasizes the relevance of this
thesis. The security practices "Implementing Kubernetes-specific Security Policies",
"Namespace separation" and "Limit CPU and memory quota" are also elaborated in
this thesis and the implemented tool detects violations of these best practices.
In his thesis, Schwegler [42] elaborated on security best practices for Kubernetes and
evaluated security scanners for Docker. He describes security mechanisms in Kuber-
netes and gives practical examples how to use them. He compares security scanners
for Dockers regarding the detection of known vulnerabilities and introduces the tools
"KubeSec" and "kube-bench" which detect violations of security best practices for static
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3 Related Work

Kubernetes manifests. He evaluates the economic costs to operate Kubernetes clusters
in the cloud versus on-premise as well as evaluating costs for cluster per customer
versus multiple customers in one cluster. One difference to this thesis is that Schwegler
focuses only on security best practices, but he integrates Docker and the economic
context in his research. Another difference is that Schwegler gives examples how to
configure a cluster securely following best practices in the first place whereas this thesis
is focused on the implementation of a tool which reports violations of best practices.
Instead of the introduced tools "KubeSec" and "kube-bench" which cover only security
best practices, "Kube-Score" is integrated in the tool implemented in this thesis because
it covers multiple areas and more best practices in total.
Spillner [44] developed and evaluated the quality assessment tool HelmQA which
automatically detects quality insufficiency in Helm charts. The tool detects duplicated
values and replaces them in order to use Helm’s templating feature to full effect. The
study object is the "KubeApps Hub" repository which is the official platform to share
and retrieve Helm charts. The "stable" directory of that repository is also a study object
in this thesis. The evaluation was conducted by daily executing the tool on the study
object over four months. The tool’s results were sent to the chart maintainers and the
acceptance of the findings were evaluated over the time period. Spillner concluded that
the tool HelmQA has a sufficiently low false-positive rate and the recommendations
were accepted, but the quality improvement over the evaluation period of four months
increased less than expected. The major difference between the implemented tools
is that HelmQA only analyzes Helm charts and reports quality insufficiency if Helm
features are not used according to best practices. The tool implemented in this thesis is
capable to analyze Helm charts, but it only analyzes the Kubernetes resources created
by the chart and reports violations of Kubernetes best practices. The methodology used
by Spillner [44] differs to the one used in this thesis. In this thesis, the implemented
tool is executed on multiple study objects. The effectiveness of the tool is measured by
the findings density it produces and the false-positive rate is determined by manually
validating the correctness of randomly picked findings. In contrast, the methodology of
Spillner [44] was to apply the tool on the study object over a certain period of time and
evaluate the effectiveness and false-positive rate on the basis of the maintainer feedback
and quality improvement of the analyzed charts.

3.2 Static Source Code Analysis

This section describes related work which evaluate or use the same approach applied
in this thesis.
In his paper, Bardas [3] explained the essential constituents of static code analysis,
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evaluated its strengths and limitations and presented well-known static source code
analysis tools. The most common techniques used for static code analysis are pattern
matching and data-flow analysis. The static code analysis approach used in this
thesis solely focuses on pattern matching because the Kubernetes manifest specify a
configuration and do not contain executable code which could be analyzed regarding
its data-flow. Bardas [3] stated that it is impossible for static code checkers to assure
correctness of a program and also false-positives can occur in static code analyses. The
false-positive rate is an important factor for determining the usefulness and developer’s
acceptance of the tool. Thus, evaluating the false-positive rate for the tool implemented
in this thesis is a research question in this thesis’ evaluation. According to Bardas [3], it
is an important constituent of static code analysis that the resulting report is easy to
understand for all developers and that it clearly presents the detected weaknesses, its
severity and location. The implemented tool fulfills this constituent as it reports findings
which contain a description of the weakness, its location, even gives recommendations
for fixing the issue and specifies the severity by categorizing the finding as error or
warning. The strengths of static code analysis depicted by Bardas [3] are that it can
be performed on modules and unfinished code and does not require a finished or
executable application. It is independent of any particular execution and dynamic user
input. Static code analysis can be performed early in the development stage before the
software is released and while the detected vulnerabilities are still relatively cheap to
fix. Bardas identified the fixed number of checks as the major limitation of static code
analysis. The analysis can only detect known weaknesses specified in the tool’s rule
database. Weaknesses for which no rules have been defined cannot be detected. The
tool’s database containing rules for known weaknesses has to be updated every time a
new type of vulnerability is detected. The other limitation mentioned by Bardas is that
only vulnerabilities in the implementation level can be detected by static code analysis
and not violations of design or architecture requirements. One part of this thesis deals
with the elaboration of Kubernetes related best practices and the implemented tool
contains checks for these current best practices. However, if new best practices are
established in the future, the implemented tool’s checks need to be extended by new
checks for the new best practices. The fact that static code analysis automatically detects
weaknesses early in the development stage is the decisive strength making static code
analysis the method of choice to solve the problem of misconfiguration in Kubernetes
manifests. Bardas [3] came to the conclusion that "[s]tatic analyzers should be a key
part of every software development process". This emphasizes the relevance of a static
source code analysis tool for Kubernetes configurations and consequently, the relevance
of this thesis.
Zampetti et al. [53] studied the usage of static code analysis tools in continuous
integration pipelines. The evaluation was conducted on 20 Java open source projects.
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The research questions were the identification of concrete static code analysis tools
being used and how they are configured, secondly which type of issues are causing
build failures and thirdly how long it takes to resolve broken builds. The results of
Zampetti et al. [53] were that almost all static source code analysis tools are configured
according to the project and that this configuration changed a limited number of times
over the observed period of time. One reason they named for the modification of the
configuration is that some checks became irrelevant. This observation fits to the finding
of this thesis that the implemented tool has to be configured for every project in order
to maximize the tool’s effect. If some checks are obsolete due to external software or
because the best practice violation is tolerated, then these checks should be disabled
in the tool’s configuration. In their second research question, Zampetti et al. [53]
detected a limited amount of broken builds and a high percentage of warnings. The
build failures are mainly caused when coding standards were violated and warnings
were reported for checks with a high number of false-positives. The results of their
third research question were that most broken builds were resolved within eight hours
by actually fixing the reported issue instead of adapting the building script or the
static code analysis tool’s configuration. Combining the results of the second and
third research question it shows that developers accept the static code analysis results
if it reports violations of coding standards. Best practices are one form of coding
standards, so it can be expected that developers accept the results of the implemented
tool reporting violations of best practices as well. Requirements are that the reported
violations contain a low number of false-positives and if the tool is not integrated in
the continuous integration pipeline causing broken builds, developers might not fix the
issues as quickly as in the study of Zampetti et al. [53] because it might be less urgent to
them. Zampetti et al. [53] concluded that "[f]orcing the adherence to coding guidelines
is one of the most useful applications of [automatic source code analysis tools]". The
adherence to best practices is very similar to the adherence to coding guidelines. It
can be assumed that static source code analysis is an effective method to enforce best
practices and prevent misconfiguration.
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The goal of this thesis is the creation of a tool which does static source code analysis
in order to detect violations of best practices in Kubernetes manifests. The purpose
of this chapter is building the foundation for the tool by elaborating on best practices
for Kubernetes manifests. The focus is set on best practices whose adherence can be
examined with static analysis. The main source for this chapter is the book "Kubernetes
Best Practices" written by Burns et al. [7]. Articles and blog entries by experienced
Kubernetes developers are also valuable sources because they often give specifications
how to adhere to or violate the best practice on the implementation level. These
specifications can be used to implement the static analysis checks which test if the best
practice is violated.
The best practices are partitioned into the categories Security, Resource Management,
Availability and Structure. Within these categories a paragraph about the meaning and
importance of each best practice is given.

4.1 Security

Kubernetes is a flexible system which manages low-level resources in a generic way [40].
Kubernetes has access to system critical resources like networking and resource alloca-
tion and it runs container images which contain unknown source code. Kubernetes
needs to isolate components especially the system critical resources. It needs to exe-
cute the black box container images which could potentially contain malicious code.
Kubernetes should grant only the minimal access rights and capabilities necessary.
Kubernetes provides features to address these potential threats, but it is the developer’s
responsibility to use them and configure the Kubernetes manifests correctly following
best practices.

4.1.1 Stable API Version

The API version has to be specified for every resource in Kubernetes manifests. It is
best practice to use the latest stable API version [10]. It is a potential threat to use
a deprecated version because these versions are not supported or may lose support
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in the future [23]. When Kubernetes resources use a deprecated API version it is
recommended to migrate them to the latest stable release.

4.1.2 Read-only Root File System

Usually a container only needs write access to a mounted volume which stores data
and the current state not only for this container instance but also all its replicas [6].
Configuring the containers to have read-only root file system rights decreases the
attack surface and can prevent malicious processes to store or manipulate data inside a
container [2]. Otherwise an attacker who compromised the container could write an
executable file and run it inside the container [39].

4.1.3 Run as Non-root

By default all processes in a container run as the root user which often comprises
more permissions than the workload requires [6, 35]. If that is the case and the
Kubernetes configuration does not explicitly set runAsNonRoot to true, an attacker
who compromised the container and managed to escape from it immediately has root
access on the host [38]. Enabling this setting gives an extra layer of protection because
the attacker would need an additional attempt to get root access [5].

4.1.4 Run as High User

The previous best practice recommends to run as non-root which is equivalent to
the user identification 0. This best practice extends the previous one by adding the
condition that the user identification value should be set to a value above 10,000. This
avoids conflicts with the host’s user table and common values [49].

4.1.5 Disable Privileged Setting in Security Context

Containers are defined as privileged if their container user identification of 0 is mapped
to the host’s user identification of 0 [6]. Privileged containers have effectively the same
permissions as root access on the host which are more capabilities than they usually
need [38, 39]. Considering the general security principle Least Privileges [39] the goal
is to limit container’s capabilities to the bare minimum necessary to operate correctly.
Setting the privileged option to false where possible is best practice and one step of
creating a secure security context [7].
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4.1.6 Disallow Privilege Escalation in Security Context

The next step towards creating a secure security context is disabling the setting to
allow privilege escalation. Even if the capabilities have been assigned correctly to the
container, as long as privilege escalation is enabled processes inside the container can
gain more privileges constituting a security risk [36]. Although privilege escalation
is enabled by default, there is rarely a situation where an application requires more
permissions during run time than it received at the start [2].

4.1.7 Set Image Pull Policy to Always

The default image pull policy would store the pulled image in the node’s cache which
can be accessed by all pods on that node [39]. This configuration has the following
known security issue. Pod A has the necessary credentials for image S, pulls it and
consumes the secret. The image is stored in the node’s cache. Pod B located on the
same node does not have the necessary credentials but uses the cached image without
the need to pull the image again. It circumvents the container registry security [46].
Setting the value "always" for the image pull policy prevents the usage of a cached
image because every pod needs to pull the image whenever it wants to use it and this
requires to pass the registry credentials check [51].

4.1.8 Use Tags for Containers but Not :latest

Having no tag for containers defaults to using the :latest tag. The latest container image
will be pulled and that may or may not be the expected version [5]. Looking at Docker
as a popular software to build containers, there the :latest tag is nothing more than
a tag. Naturally, it is expected to be always the most recent pushed version of the
container but that is not the case. The :latest tag has no additional functionality. It is the
default if no other tag is given, which makes it error-prone for human mistakes [47].
A developer who accidentally forgets to tag his pushed container version would
immediately overwrite the :latest image which could lead to unexpected behavior or
even failing containers being deployed to your production cluster if it pulls the :latest
image version. The solution is to use unique and descriptive tags for example using
the Git hashes is a common good practice [7, 41].

4.1.9 Enforce Role-based Access Control

An authorization mode should be configured because otherwise any user would
have cluster-admin privileges [30]. The role-based access control supersedes the now
deprecated attribute-based access control. It is the most used security mechanism to
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implement a fine-grained permission structure for actions performed against the API
by users or groups [7]. It is best practice to create custom roles on the application-
level [48]. Consequently, for every application there is a service account specified in the
corresponding pod and the service account only holds the permissions the application
needs considering the Least Privilege principle. Creating customized roles for many
applications and service accounts requires high administrative effort. The trade off
between administrative effort and adhering to the Least Privileges principle has to be
chosen for every project individually.

4.1.10 Disable Automatic Mount of Service Account Token

All pods and containers without an explicit service account get the default service ac-
count automatically assigned [25]. The default service account has various permissions
and most applications do not even need to talk to the API [39]. Therefore, the option to
automatically mount an API token should be disabled for service accounts.

4.1.11 Disable Host PID

If a container runs in the host’s PID namespace, it can snoop on processes running
outside the container. If the container also has ptrace capabilities, it could be exploited
to escalate privileges outside of the container [36].

4.1.12 Disable Host IPC

When host IPC is enabled the container can interact with processes outside the container
circumventing this layer of isolation [36].

4.1.13 Disable Host Network

A container running in the host’s network namespace has access to the local loopback
device. This way it could access network traffic to and from other pods [36].

4.1.14 Use Secrets for Confidential Information

Confidential information like credentials, tokens or keys should always be stored in
Kubernetes secret resources [7, 25]. Furthermore, sensitive Configmap and Secret
resources should be encrypted by external tools [35].
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4.1.15 Require Network Policies

With network policies the communication between all Kubernetes components and
also with endpoints outside the network can be controlled [7, 25]. Network policies
can create firewall-like protection between pods running on the same Kubernetes
cluster [37]. If an attacker could compromise a container, the attacker would try to
explore the network to compromise other containers and hosts as well [39]. Restricting
network access and communication path would isolate different components, making
it more difficult for the attacker to infiltrate the entire system. The official Kubernetes
website recommends to deny all traffic in the network and then incrementally add the
necessary routes as a best practice [35].

4.1.16 Deny Not Trusted Registries

Containers are black boxes for Kubernetes. They are trustfully executed without
inspecting them for malicious code or other security vulnerabilities. Due to this
limitation, it is best practice to allow containers from trusted registries only [7]. The
Kubernetes admission controller can be used to enforce image registry governance
policies which automatically deny all images from not trusted registries [30].

4.2 Resource Management

Managing resources includes allocation of low-level resources like memory and CPU.
These resources can be assigned on namespace-, pod- or container-level specifying the
minimal amount needed for the component and the maximum amount of resources
the component may claim. These values among others are important specification for
the Kubernetes scheduler to manage and distribute the components efficiently between
the nodes. Additionally, managing resources means supervising that all components
fulfill the task they are intended for.

4.2.1 Set Requests

The request value determines the amount of resources the container or pod is guaran-
teed to get [6]. The scheduler will only mount the pod or container on a node that can
provide the required resources [7, 13]. Setting the requests correctly avoids the threat
of container throttling due to the lack of resources [25].
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4.2.2 Set Limits

The limit value determines the maximum of resources the container or pod can claim.
Specifying limits prevents resource hogging by misbehaving containers and thus,
hinders Denial of Service attacks through this application [25]. Further, it serves the
scheduler as a metric to choose the best suited node for the current pod [37]. Limits
can be set for memory and CPU as resources. If a container exceeds its CPU limit,
Kubernetes starts throttling the container because CPU is considered a compressible
resource [7]. This can result in a worse performance, but does not cause the pod
to terminate. Memory cannot be artificially compressed in any way leading to a
termination of the pod if an internal container exceeds its memory limit [13].

4.2.3 Set CPU Request Less or Equal to One

Unless the application executes highly computational tasks and is designed to use
multiple cores, it is best practice to set the CPU request to one or below [37, 41].
Running more replicas of the container compensates for the restriction of this best
practice and gives the system more flexibility and reliability [13].

4.2.4 Set Namespace Quotas

Similar to the three previous best practices requests and limits can be specified for
namespaces. This feature is called namespace quotas and sets the requests and limits
for all pods and all its containers within one namespace [7, 37]. If the namespace
quotas are not defined, "noisy neighbor" scenarios could arise [29]. Without resource
quotas one developer team could hog more resources than their fair share on the cluster
reducing the resources and performance for other teams to less than their fair share on
the cluster [13].

4.2.5 Use Ingress over LoadBalancer

Using the type LoadBalancer for services provides high availability and high perfor-
mance, but the cloud provider also allocates more resources charging more money for
the service [5]. The Ingress component is able to route multiple services through a
single external endpoint. Ingress, however, is not the preferable choice in every scenario
as it only supports the HTTP(S) protocol and not UDP or TCP [7].
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4.2.6 Do Not Specify Host Port

It is recommended to leave the host port unspecified, so that it is chosen dynamically
when being scheduled. Otherwise the options to schedule the pod are limited as the
combination of host IP, host port and protocol has to be unique for every pod that is
scheduled on a node [10]. The host IP defaults to 0.0.0.0 and the protocol defaults to
TCP if not specified differently. This leaves the host port as only flexible part in this
unique combination. If the host port is set to a fixed value, it can conflict with other
pod’s host port, host IP, protocol combination making it difficult to find a suiting node
especially if other aspects such as resource requests and limits are taken into account.
It certainly makes scheduling and resource management less efficient. Thus, it should
be avoided to set the host port to a fixed value.

4.2.7 Set Dependent Components

In order to operate as intended Kubernetes components require certain information
when they are defined in a Kubernetes manifest. The required information are different
for the various Kubernetes components. Some examples are that Ingress components
must target at least one service, ConJob components must configure a deadline, Service
components must target at least one pod and HorizontalPodAutoscaler components
must target a valid object [51].

4.3 Availability

A key feature of Kubernetes and a main purpose of all orchestration tools is the
scalability and availability it provides to the orchestrated applications. This section
comprises best practices regarding scalability, availability of resources and failure
recovery.

4.3.1 Horizontal Pod Autoscaler

The HorizontalPodAutoscaler is a Kubernetes component which automatically scales
the number of pod replicas up or down based on the current usage of the respective
pod during run time [37]. It uses CPU, memory or custom metrics for its evaluation
whether a pod should be scaled up/down [7, 25]. It is important that deployments do
not have a replica count set configured statically if a HorizontalPodAutoscaler is used
to change this value dynamically [51].
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4.3.2 Cluster Autoscaler

The cluster autoscaler has a similar approach as the HorizontalPodAutoscaler, although
it does not target scaling on pod-level but scaling on node-level. It determines the
utilization of nodes and scales the cluster accordingly by requesting new nodes from
the cloud provider or removes idle nodes [25]. Another signal that more nodes are
needed is if there are pending Pods [7]. This can occur when the Pod’s request value is
too high for any node to provide the requested resources, see Subsection 4.2.1.

4.3.3 Odd Number of Master Nodes

It is necessary to have an odd number of master nodes equal or higher as three in order
to have a clear majority in case of a network split [40]. Following this best practice the
cluster can overcome the failure of one master node and by choosing an odd number
of master nodes the cluster has the same tolerance as the next higher even number of
master nodes [25].

4.3.4 Configure Pod Anti Affinity

Replicas of Pods have the purpose to increase availability and reliability. Assigning
all replicas on the same node reduces the effectiveness of this measure because the
failure of this one node would cause all replicas to be unavailable [41]. Configuring
the PodAntiAffinity can guarantee an even distribution of replicas across all nodes and
ensures that enough replicas are available even when one node fails [7].

4.3.5 Specify Pod Disruption Budget

The PodDisruptionBudget specifies the number of replicas that must remain available
upon a voluntary disruption [7, 41]. A voluntary disruption could be a rolling update.
Instead of shutting down all Pod replicas simultaneously, the PodDisruptionBudget
prevents the specified amount of replicas to shut down to assure this amount of
availability even during an update. The remaining old versions of the Pod can be
updated as soon as updated versions of the Pod are up and running.

4.3.6 Set Termination Grace Period

For a voluntary disruption Kubernetes sends a sigterm signal to the Pod as first step in
the termination process. Sending the sigterm signal starts the termination grace period
which defaults to 30 seconds [41]. During this period of time the pod has to do tasks like
saving data and its state, closing network connections, finishing their current request or
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task [15]. If the Pod finished its graceful termination, Kubernetes immediately continues
with the termination process without waiting for the full 30 seconds to pass [15]. But if
the time is up and the Pod did not finish its graceful termination, Kubernetes sends a
sigkill signal forcing the Pod to shut down. A force shut down could lead to memory
leaks or data loss which would be fatal. Thus, knowing the maximum time needed
for Pods to gracefully terminate and setting the termination grace period correctly is a
critical best practice. Despite the fact that Kubernetes immediately continues when the
Pod finished its termination, it is not suitable to set termination grace period infinitely
high. A Pod could run in a deadlock during termination making the force shut down
necessary. An infinitely high termination grace period would cause the system to get
stale and cancel the failure recovery mechanisms. Thus, setting the termination grace
period correctly is important for a graceful shut down and performance reasons.

4.3.7 Create Health Checks

Configuring health checks for distributed systems is almost mandatory and Kubernetes
is no exception [14]. By default Kubernetes monitors if processes are running or not
to determine whether they are healthy [5]. The default behavior can be optimized by
creating custom health checks in order to improve the speed and accuracy of detecting
unhealthy processes. The two checks that should be defined are readiness probes and
liveness probes.

Readiness Probes

The purpose of the readiness probe is to detect whether a container is ready to receive
traffic [7, 41]. Without the readiness probe Pods could be terminated or receive user
requests during the initialization process conveying unavailability to the user [6]. When
the probe starts failing Kubernetes stops sending traffic to the respective Pod until it
continues passing the readiness probe [14, 25].

Liveness Probes

The liveness probe’s purpose is to detect when containers are in a broken state they
cannot recover from like a deadlock [7, 25]. When the probe fails Kubernetes removes
the Pod with the failed container and creates a new replica as a replacement [14, 37].

Readiness and liveness probes should never use the same check because the reaction
when the check fails differs. Readiness probe failure leads to a temporary stop of traffic
until the Pod is ready again whereas liveness probe failure leads to an immediate
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termination of the Pod [1]. During initialization or when a Pod is busy with a request
the readiness probe should fail because the Pod cannot take another request on. But
the liveness probe should pass while the Pod is in one of these healthy states because
they are doing meaningful work and are not stuck.
Also readiness and liveness probes should not call dependent services to avoid cascad-
ing failure [41].

4.4 Structure

This section contains all best practices which target an organizational or structural
concern. It includes syntax rules, usage of the Labels feature in Kubernetes as well as
the usage of the Kubernetes package manager Helm.

4.4.1 Use Labels

Labels are a powerful feature of Kubernetes. The user can create custom labels and
assign arbitrary values to them. This helps to identify and organize Kubernetes
components into groups. Further, it allows bulk operations on a group of Kubernetes
components determined by querying on label values [25]. It is best practice to use
plenty of descriptive labels and use them on as many Kubernetes components as
possible to maximize their effect [5].

Recommended Labels

The official Kubernetes website recommends the usage of the following labels: name,
instance, version, component, part-of and managed-by [17]. They have the shared prefix
app.kubernetes.io so that they do not conflict with custom user labels. In order to use
these labels to full effect, they should be specified for every Kubernetes component
without exception [7, 24].

Prohibit No Labels

It is recommended to create a list of required labels, a list of should-have labels and
a list of optional labels [24]. This provides clear guidelines to the developers across
teams and guarantees a consistent labeling convention. Based on this method the best
practice of prohibiting Kubernetes components with no labels assigned is deduced. The
sole exceptions are the Kubernetes components ReplicaSet and ReplicationsController.
In case that these Kubernetes components have no labels assigned themselves, their
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labels are the same as the labels of the Pod that the ReplicaSet or ReplicationController
manages [32].

4.4.2 Follow Syntax Rules

The Kubernetes OpenAPI specification defines syntax rules for Kubernetes manifests.
For every option it specifies the type and the size of the value acceptable for the
corresponding field. Labels names and label values for example have a maximum
character count of 63, they must begin and end with an alphanumeric character and in
addition to alphanumeric characters only dashes, underscores and dots are allowed as
special characters [11, 24].

4.4.3 Do Not Set Namespace to Default in Manifests

The default namespace is created by Kubernetes itself and as the name indicates it is
used as default if no other namespace is specified [32]. Using the default namespace
only makes sense if the project is small enough that it is the only namespace being
used [8]. In that case, it is best practice to never specify a namespace in Kubernetes
manifest to have a clean and uniform style. If the project requires multiple namespaces,
the default namespace should not be used but only custom namespaces because adding
objects to the default namespace makes role-based access control more difficult [7, 36].
Further, using the default namespace makes the system error prone to human mistakes
as developers may forget to explicitly set the namespace which adds the Kubernetes
component to the default namespace and that could lead to overwriting or disrupting
other Kubernetes components in that namespace [12]. If the project is big enough that
it requires multiple namespaces, then it is best practice to create separate namespaces
for individual teams, projects or customers [25]. Using multiple namespaces does
not add a performance penalty [12]. In contrary, it can even improve performance
because requests and limits can be defined on a namespace-level, see Subsection 4.2.4.
Also, creating multiple namespaces is the first level of isolation providing separation of
concern and decreasing the attack surface [19].

4.4.4 Use Helm

Helm is the Kubernetes package manager and the base structure is explained in 2.8.
Helm should be used as a best practice because it improves managing complexity,
update strategy, sharing Kubernetes manifest data and safe rollbacks [40]. Despite the
fact that the actual values for the placeholder used in the templates can be assigned
during run time it is best practice to assign default values for every placeholder in
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the value.yaml file, so that the deployment does not fail if no new values are assigned
during run time. In-place upgrades and custom hooks simplify the update strategy [40].
There is a official repository to share preconfigured Helm charts with all necessary
dependencies with the community [5]. It contains Helm charts for popular software
components which can be deployed to any cluster out of the box. Helm provides the
functionality to rollback a set of recent changes to a cluster with a single command [40].
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After elaborating on best practices for Kubernetes manifests the following part of this
master thesis is describing the implementation of a prototypical static source code
analysis tool which implements most of the identified best practices from Chapter 4.

5.1 Covered Best Practices

The focus of the implementation are checks for the most relevant best practices and
checks for best practices which could be implemented in a reasonable amount of time.
Table 5.1 shows for every best practice whether the implemented tool detects violations
of the best practice. If a best practice is not covered by the implemented tool, the
Table specifies a short reason for it, but in the following paragraph these reasons are
explained in more detail.
The prototype is able to detect violations of 11 best practices for the Security category,
6 for the Resource Management category, 5 for the Availability category and 4 for the
Structure category. The best practice Use Helm 4.4.4 is integrated in the prototype as it
not only supports static Kubernetes manifests but also Helm charts as input. Adhering
to the Run as High User 4.1.4 best practice already implies compliance with the Run
as Non-root User 4.1.3 best practice. Regarding the Disallow Privilege Escalation in
Security Context 4.1.6 best practice there is the option to change the default value
with the PodSecurityPolicy resource. Given the fact that it is possible to influence the
behavior in multiple ways makes it more difficult to test if the best practice is adhered
to. The best practice Use Secrets for Confidential Information 4.1.14 cannot be tested
efficiently with a static source code analysis tool because of the limitation to determine
what data in non-Secret Kubernetes resources corresponds to confidential information.
Deny Not Trusted Registries 4.1.16 and Enforce Role-based Access Control 4.1.9 are
two best practices which highly depend on project’s individual requirements making
it difficult to create generally applicable checks. Additional software and service
providers like Rancher and NeuVector could take over cluster deployment and full life
cycle container security. Using them makes best practices like Cluster Autoscaler 4.3.2,
Set Namespace Quotas 4.2.4 and Odd Number of Master Nodes 4.3.3 obsolete because
the external software handles the orchestration regarding these aspects. Developers do
not need to specify a configuration for these aspects in Kubernetes manifests.
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Table 5.1: Presents whether the implemented tool detects violation for the best practice.
The Comment column either gives the reason why the best practice is not
covered or it specifies whether the check is provided by Kube-Score or an
own implementation.

Best Practice In Prototype Comment

Stable API Version 3 Provided by Kube-Score
Read-only Root File System 3 Provided by Kube-Score
Run as Non-root 7 Included in Run as High User
Run as High User 3 Provided by Kube-Score
Disable Privileged Setting in Security Context 3 Provided by Kube-Score
Disallow Privilege Escalation in Security Context 7 Multiple ways for adherence
Set Image Pull Policy to Always 3 Provided by Kube-Score
Use Tags for Containers but Not :latest 3 Provided by Kube-Score
Enforce Role-based Access Control 7 Project specific differences
Disable Automatic Mount of Service Account Token 3 Own implementation
Disable Host PID 3 Own implementation
Disable Host IPC 3 Own implementation
Disable Host Network 3 Own implementation

Use Secrets for Confidential Information 7
Difficult to identify

confidential information
Require Network Policies 3 Provided by Kube-Score
Deny Not Trusted Registries 7 Project specific differences

Set Requests 3 Provided by Kube-Score
Set Limits 3 Provided by Kube-Score
Set CPU Request Less or Equal to One 3 Provided by Kube-Score

Set Namespace Quotas 7
External software could make

best practice obsolete
Use Ingress over LoadBalancer 3 Own implementation
Do Not Specify Host Port 3 Own implementation
Set Dependent Components 3 Provided by Kube-Score

Horizontal Pod Autoscaler 3 Provided by Kube-Score

Cluster Autoscaler 7
External software could make

best practice obsolete

Odd Number of Master Nodes 7
External software could make

best practice obsolete
Configure Pod Anti Affinity 3 Provided by Kube-Score
Specify Pod Disruption Budget 3 Provided by Kube-Score
Set Termination Grace Period 3 Own implementation
Create Health Checks 3 Provided by Kube-Score

Use Labels 3 Own implementation
Follow Syntax Rules 3 Provided by Kube-Score
Do Not Set Namespace to Default in Manifests 3 Own implementation
Use Helm 3 Own implementation
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5.2 Technology Used

In this section, every external tool used in the prototype is introduced by explaining its
general purpose and its role regarding the created prototype.

5.2.1 Teamscale

The client/server application Teamscale serves as underlying framework and tool for
this thesis. Teamscale is developed by CQSE GmbH. It is a software quality analysis
tool, which performs incremental analysis [26]. Teamscale analyzes and stores the
history of a system. The tool provides several repository connectors to version control
systems like Git, SVN and TFS. Teamscale uses a variety of known quality measures
such as structure metrics, clone detection and code anomaly [21].
For this prototype, Teamscale is used to maintain the project. It automatically fetches
changes to the file system or the version control system repository and launches the
analysis. It provides the delta which contains all files that have been added, changed or
deleted during the recent change. It also provides the content index containing all files
that belong to the project.

5.2.2 Kube-Score

Kube-Score is an open-source static source code analysis tool owned by Gustav Westling.
It receives the content of Kubernetes manifests as input and returns a report with
recommendations to make the application more secure and resilient based on best
practices [50]. Figure 5.1 shows an example report created by Kube-Score. There are
other tools which also perform static source code analysis for Kubernetes manifests,
for example KubeSec or Kubeval. But Kube-Score is the most extensive tool providing
checks which target a large variety of best practices from all categories as defined in
Chapter 4.

5.2.3 Helm

As mentioned in Section 4.4.4, it is best practice to use Helm for the described benefits.
Thus, it is important that the implemented prototype is capable to analyze Helm
charts. The Helm software is used to render the Kubernetes manifests locally by
replacing the placeholder in the templates with actual values from the value.yaml
file. At this point, the best practice to specify default values for every placeholder
variable is important for this Helm feature to work properly. Another crucial aspect for
a successful local rendering process is providing the chart dependencies. The required
charts can be provided directly in the allocated directory or they are only specified
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1 [ {
2 "object_name": "Deployment/apps/v1/default/web2",
3 "type_meta": {
4 "kind": "Deployment",
5 "apiVersion": "apps/v1"
6 },
7 "object_meta": {
8 "name": "web2",
9 "namespace": "default",

10 "creationTimestamp": null
11 },
12 "checks": [
13 {
14 "check": {
15 "name": "Label values",
16 "id": "label-values",
17 "target_type": "all",
18 "comment": "Validates label values",
19 "optional": false
20 },
21 "grade": 10,
22 "skipped": false,
23 "comments": null
24 },
25 {
26 "check": {
27 "name": "Container Image Pull Policy",
28 "id": "container-image-pull-policy",
29 "target_type": "Pod",
30 "comment": "Makes sure that the pullPolicy is set to Always.
31 This makes sure that imagePullSecrets are always validated.",
32 "optional": false
33 },
34 "grade": 1,
35 "skipped": false,
36 "comments": [
37 {
38 "path": "web2",
39 "summary": "ImagePullPolicy is not set to Always",
40 "description": "It’s recommended to always set the
41 ImagePullPolicy to Always, to make sure that the
42 imagePullSecrets are always correct, and to always
43 get the image you want."
44 }
45 ]
46 }
47 ]
48 } ]

Figure 5.1: An example for a Kube-Score report including only two checks.
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in the requirements.yaml file for Helm v1 or the Chart.yaml file for Helm v2. If the
dependencies are only specified by name, version and repository, an additional Helm
command is necessary to download archives for these charts. It is not the common
case that charts have dependencies and an additional execution of an external software
which downloads data is very time-consuming. In order to minimize the cost, the
command to download dependencies is neglected at first. Only when the process
to locally render the chart failed and the error indicates that the cause is missing
dependencies the Helm command to download the dependencies gets executed and
another attempt to locally render the chart starts. This course of action keeps the
feedback time low because for the most charts only one Helm command is executed.
But in the case that dependencies are specified, three Helm commands are executed:
the failing local render attempt, downloading the missing dependencies, rendering the
chart locally again. This sequence of commands has high performance cost and should
be avoided. Thus, it is recommended to add relevant charts to the designated folder
manually for better performance.

5.3 Prototype

In this section, the key aspects of the prototype are explained. The prototype is
capable to analyze projects where static Kubernetes manifests and Helm charts are used
interchangeably. First, the files and Helm charts which need to be analyzed have to be
detected. Then, the Helm charts need preliminary work to output the static Kubernetes
manifest needed for the analysis. Kube-Score and the custom checks implemented
as part of this thesis analyze the Kubernetes manifests and report violations of best
practices.

5.3.1 Identification of Source Files

The first step is the identification of source files within the project which need to
be analyzed. Teamscale provides the delta between two sequential versions of the
manifests and only these changed or added files may contain new findings. All other
files have already been analyzed in their current version. Among the files in delta
only Kubernetes manifests are targets for the analysis. Filtering files according to their
extension is not enough as yaml and json files can also be used for other purposes than
Kubernetes manifests. Additionally to the extension, the file’s content is checked for
the base structure of Kubernetes resources. Every Kubernetes resource must define
apiVersion, metadata and kind as fields which serves as an identifier.
For the remaining files it needs to be determined whether they are belonging to a Helm
chart. Helm charts have a fixed structure and it is required to have the file named
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Chart.yaml at the first level in the chart folder. Thus, a Kubernetes manifest which has
a Chart.yaml file in the same directory or a parent directory is part of a Helm chart.

5.3.2 Assembling Analysis of Helm Charts

The analysis takes static Kubernetes manifests as input and not Helm charts itself. Helm
charts need to locally render the Kubernetes manifests. This procedure is described in
Section 5.2.3. Teamscale stores the project data in a database. It provides the content
of all files but not the files themselves stored on the local machine. In contrast, Helm
operates on the actual chart represented as files on the local machine. The prototype
circumvents this mismatch by rebuilding the chart in a temporary directory with tem-
porary files. For the execution of Helm it is important to restore the chart with all its
files and not only the Kubernetes manifest in yaml or json format. Custom definitions
can be stored in files with the .txt extension and without them, the attempt to locally
render the chart into Kubernetes manifests would fail.
Helm renders all template files into one static Kubernetes manifest splitting the con-
tained Kubernetes resources by "- - -". The fact that only one Kubernetes manifest
displays the content of the entire chart makes it difficult to attach the findings of the
analysis to the responsible file within the chart. As backup and default setting, all
findings are attached to the Chart.yaml file and the developers need to do the extra
step to locate the source for this finding within the chart’s template files. Helm itself
provides the solution for this issue by writing the responsible source file’s path as a
comment in the first row for every Kubernetes resource. The prototype looks for this
information and updates the source from the generic default option to the correct file
for all findings found in this Kubernetes resource.

5.3.3 Analysis of Kubernetes Manifests

The final step is the analysis of the Kubernetes manifests. Kube-Score takes the manifest
as input and returns a report. Kube-Score gives grades for every implemented check
(see Figure 5.1, line 21). Additionally, the report contains a general description of the
best practice tested with the corresponding check (see Figure 5.1, line 30) as well as
comments which specify the concrete issue in the manifest and provide recommen-
dations how to fix it (see Figure 5.1, line 36-45). The prototype parses the report and
creates a finding for every failed check. The best score for a grade is 10. If the check
has the grade 10, it passed and the best practice is adhered to. Grades between 4 and 9
are warnings, whereas grades below 4 are considered critical errors. Kube-Score offers
a human-readable output where only violated checks are displayed and the violations
are categorized as warnings or errors. The threshold of 4 has been determined by
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comparing the grades for the checks and the assigned category in the human-readable
output.
As part of this thesis, checks are implemented in order to extend the coverage of best
practice for this prototype. Table 5.1 shows which best practices are covered by checks
implemented as part of this thesis and which are covered by Kube-Score’s checks. As
a preparation for the execution of the checks, the Kubernetes manifests are split by
the divider "- - -" resulting in a list of Kubernetes resources. The Kubernetes resources
are parsed with the SnakeYaml library to get a navigable structure. The best practices
target a specific Kubernetes resource type or component like metadata. The type is
given in the "kind" field which must be defined for every Kubernetes resource. The
components like metadata or Pods can be defined at multiple places within a Kuber-
netes resource. Pods can be defined as a Kubernetes resource itself or as a nested object
in the "template" field. Metadata is defined for every Kubernetes object whether it is
a Kubernetes resource or only defined as a nested object within another Kubernetes
resource. It is important to detect all occurrences of these components and execute the
checks targeting these components for every instance.
For every metadata instance it is checked whether the "namespace" field is defined
and set to "default". In that case, a warning is reported, see also Section 4.4.3. Further,
the metadata must contain a non-empty "labels" field. The only exception to this rule
are metadata instances belonging to Kubernetes resources of the type ReplicaSet or
ReplicationController, see also Section 4.4.1. Every Pod object has a "spec" field and
the assigned PodSpec must specify a value for the "terminationGracePeriodSeconds"
field as recommended by the best practices described in Section 4.3.6. If the PodSpec
object has objects assigned to the "containers" or "initContainers" fields, these objects are
checked. If an object defined in their "ports" field defines the "hostPort" field, a warning
is reported, see also Section 4.2.6. If the fields "hostPID", "hostIPC" or "hostNetwork"
are defined and set to true in the PodSpec, warnings are reported by the responsible
checks, see also Section 4.1.11, Section 4.1.12 and Section 4.1.13. Similarly, the same
fields are checked for Kubernetes resources of type PodSecurityPolicy in its PodSecuri-
tyPolicySpec object assigned to the "spec" field. The PodSpec or Kubernetes resources of
type ServiceAccount should define the field "automountServiceAccountToken" and set
it to false as explained in Section 4.1.10. Otherwise a warning is reported. A warning is
also reported if a Kubernetes resource of kind Service specifies LoadBalancer as the
value for the field "type" in the service’s "spec" object, see also Section 4.2.5.
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5.4 Limitations

The implemented static source code analysis tool has limitations explained in the
following subsections.

5.4.1 Delta Split

As mentioned in Subsection 5.2.1, Teamscale creates the delta containing the files that
have been added or changed with the currently analyzed commit. For commits with
a large amount of added or changed files, these files are divided into multiple deltas.
The tool is initiated for every delta separately. This procedure is meant to improve
parallelism and threading, leading to a better performance. But, for the execution of
this tool, it causes the opposite when Helm charts are involved. The files are assigned
randomly to the deltas. If a chart consists of 10 Kubernetes manifests and these 10 files
are all assigned to different deltas, the Helm chart would be rendered and analyzed 10
times giving redundant results. This limitation causes a significant drop in performance
for the analysis of large commits. A solution for this issue would be either to adapt
Teamscale by assigning files in the same directory to the same delta or to extend the
tool by tracking which charts have already been analyzed for a commit.
Teamscale provides the option to set the delta size in the project settings. When the
implemented tool is executed, it is recommended to set the delta size higher than the
number of files in the project, so that Teamscale always creates only one delta per
commit even for the initial commit where all project files are considered as newly
added.

5.4.2 Detection of Kubernetes Manifests

Kubernetes manifest are specified in yaml or json files. Files with these extensions can
also be used for other purposes than Kubernetes. The implemented tool addresses
this issue by looking for the Kubernetes base structure within the file’s content as
mentioned in Subsection 5.3.1. Every Kubernetes manifest must have the base structure.
As a consequence, the occurrence of false-negatives is impossible. However, the search
is not specific enough to only accept Kubernetes manifests. It is possible to have
false-positives. The tool would try to analyze the false-positives, most likely leading
to execution error findings. This mechanism is meant to be an additional control step
to filter non Kubernetes manifest files, but it is still the responsibility of the developer
to exclude paths which do not contain Kubernetes manifests upon project creation in
Teamscale.
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5.4.3 Support for External Tools

The implemented tool supports the use of the external tool Helm in order to organize
Kubernetes manifest in charts. Helm is the package manager of Kubernetes and
commonly used. But there are other external software that would need the same level
of support by modifying the tool internally, for example if they offer an alternative
templating feature for Kubernetes manifests. Missing support for an external tool may
obstruct the implemented tool of this thesis in successfully analyzing projects relying
on the external tool.

5.4.4 Number of Checks

The tool is limited to the checks implemented or provided by Kube-Score. It is not
capable to detect all violations of best practices as the checks do not cover all best
practices elaborated on in Chapter 4 (see Figure 5.1). Furthermore, Kubernetes is an
evolving software and that is why the best practices for working with Kubernetes are
evolving as well.
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This chapter presents the evaluation of the aforementioned static source code analysis
tool. In the first section of this chapter, the research questions are defined, followed
by a description of the study setup and design. Then the study objects are introduced.
Afterwards, the results are presented and in the discussion section the results are
assessed. The final section of this chapter deals with the threats to validity regarding
this evaluation.

6.1 Research Questions

This section defines the research questions and their purpose.

6.1.1 RQ1: What finding densities can be observed when running our tool
on the study subjects?

The number of findings detected by the tool are measured. In order to generalize
the result across the study objects, the number of findings is given in proportion to
the study object’s size. The purpose of this research question is the evaluation of the
effectiveness of the tool. It depicts whether findings can be found in practice.

6.1.2 RQ2: Which checks produce the most findings and which best
practice group is violated most often?

The best practices are grouped into the categories introduced in Chapter 4. The total
number of findings per best practice and per category are evaluated. These numbers
indicate for which category the prototype performs the best. This research question
identifies best practices which are violated most commonly and also identifies the
best practice group which is violated the least. Our hypothesis is that the Security
category is violated the least. Adhering to the security best practices is system critical
and usually a special focus is put on providing a secure application and protecting
the application against as many known vulnerabilities as possible. The assumption is
that the developer teams creating the study objects already integrated mechanisms to
adhere to these best practices without using the tool presented in this work.
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6.1.3 RQ3: What false-positive rate needs to be expected from our tool?
Which checks produce the most false-positives?

Best practices provide guidelines how to do certain things in a usually correct way.
But it is not always the only correct way and in some special cases it might even
be false. Sometimes best practices are violated on purpose because of the special
circumstances in the certain case. If best practices are violated, findings are reported
giving recommendations what to do in order to adhere to the best practice and improve
the Kubernetes configuration. But, as mentioned before, there are exceptions to the
rules defined by the best practices. Thus, the implemented tool is expected to have
some noise in its reported findings. The findings produced by the checks differ in
importance. They are partitioned in errors and warnings. Errors are violations of
best practices which should be adhered to in most cases and are rarely violated on
purpose. Warning findings are expected to produce more noise. They are referring to
best practices where violations on purpose happen more frequently. But the warnings
give the developer the opportunity to double check whether the current version is
meant to be like it is.
The purpose of this research question is the evaluation of the tool’s proneness to errors
and noise. False-positives are all reported findings which are incorrect or invalid
because of the special case.

6.1.4 RQ4: How did large projects evolve over time with regard to the
number of findings and size?

In this research question the evolution of the study object is analyzed with regard
to the number of findings and the project’s size in order to evaluate when the tool
is the most useful. Our hypothesis is that the findings density decreases over time.
At the beginning of a project, the focus is usually on getting the application running.
Over time the team has more capacity to check more best practices and extend the
application to adhere to them. Another hypothesis is that the correlation of decreasing
number of findings and passing time is less pronounced with regard to the security
best practices. Extending the hypothesis mentioned in Subsection 6.1.2 the findings
density should be consistently low for the Security category.

6.2 Study Setup

The technologies necessary are described in Section 5.2. The versions used for this
evaluation are Teamscale 6.1, Kube-Score 1.8.1 and Helm 3.3.1. Teamscale has been
modified to a custom version by implementing the prototype internally. For every
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study object a Teamscale project is created. The study objects are added via the
Teamscale Git repository connector and the entire development history is analyzed.
The "master" branch is analyzed for every study objects. Only the Zalando study object
is an exception as its "dev" branch is analyzed because it is declared to be the main
branch in the repository’s description.

6.3 Study Design

This section describes the methodology used to conduct the evaluation. For every
research question an explanation is given how the results are obtained.

6.3.1 RQ1: What finding densities can be observed when running our tool
on the study subjects?

With regard to this evaluation, only Kubernetes manifests are relevant for determining
the project size of study objects. Including all files of the project would distort the results
because non Kubernetes resources are not analyzed and cannot generate findings. Thus,
they have no meaningfulness for this evaluation and are not considered for the project
size.
The metric Number of Manifests is not suitable to describe the project size. It is up to
the developer team whether they decide to create a new manifest for every Kubernetes
resource or to include many resources in a single manifest. This can lead to significantly
varying manifest sizes so that they cannot be counted equally in the metric to determine
the project size. To circumvent this inequality the project size is determined by the
metric Lines of Code, which sums up the number of lines in manifests.
The finding density is defined as the total number of findings detected for the study
object per 1,000 Lines of Code. The total number of findings only contain the findings
detected by the static source code analysis tool as described in Chapter 5.

6.3.2 RQ2: Which checks produce the most findings and which best
practice group is violated most often?

In order to answer this research question, the implemented tool analyzes the study
objects and the reported findings are assessed on a group-level and a check-level. The
best practice groups are the categories introduced in Chapter 4. The most often violated
best practice group is the category comprising the most findings. Furthermore, the
number of findings detected per check are assessed in order to identify the 3 checks
which produce the most findings.
The checks implemented as part of this thesis cover exactly one best practice each. Most
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of Kube-Score’s checks also cover one best practice with two exceptions. The check
with the identifier "container-resources" covers the best practices Set Requests (Section
4.2.1), Set Limits (Section 4.2.2) and Set Dependent Components (Section 4.2.7). When
setting requests or limits, the check distinguishes between the resources memory and
CPU. The check with the identifier "container-security-context" covers the best practices
Read-only Root File System (Section 4.1.2), Run as High User (Section 4.1.4) and Disable
Privileged Setting in Security Context (Section 4.1.5). Kube-Score distinguishes between
violations of the Run as High User best practice if the user ID or the group ID equals
10,000 or below.
Kube-Score reports findings for the checks "container-resources" and "container-security-
context". In the "comments" section of the checks, details about the exact violations
are given (see Subsection 5.3.3). For the "container-resources" check the comments
can contain messages of the types "Memory request not specified", "CPU request not
specified", "Memory limit not specified", "CPU limit not specified" or "No containers
defined". For the "container-security-context" check the comments can contain messages
of the types "Container has no security context", "Writable root filesystem", "Container
is privileged", "UserID above 10,000 is recommended" or "GroupID above 10,000 is
recommended". In order to make all checks comparable, each check has to cover
the same amount of best practices. The checks "container-resources" and "container-
security-context" are split by their comment types to create checks that only cover one
best practice. The types "Memory request not specified" and "CPU request not specified"
are combined to cover Set Requests and "Memory limit not specified" and "CPU limit
not specified" for Set Limits respectively. "UserID above 10,000 is recommended" and
"GroupID above 10,000 is recommended" are added to cover the best practice Run as
High User. All violations reported by the "container-security-context" check with the
comment "Container has no security context" are added to the Run as High User best
practice because it is the only best practice which is violated by the default settings if
no custom security context is defined.
Another important factor taken into consideration are the errors occurring prior to
the analysis. There are two types of possible errors. The first type comprises errors
reported by Helm during the process of locally rendering the chart. Such an error
would mean that neither Kube-Score nor the implemented checks in this thesis would
be executed for the chart. The second type covers errors that occur while parsing the
content of static Kubernetes manifests. The manifest content is parsed per Kubernetes
resource. A failure would prevent the execution of the checks implemented in this
thesis for the parsed Kubernetes resource but not the entire manifest.
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6.3.3 RQ3: What false-positive rate needs to be expected from our tool?
Which checks produce the most false-positives?

For every check that is determined as one of the 3 most findings producing check
for a study object as described in the study design of RQ2, the false-positive rate is
evaluated. 10 findings per check are picked randomly and examined regarding validity.
Developers of the study objects Alpha and Beta are included in the examination process.
They contribute expertise in working with Kubernetes and comprehensive knowledge
about their projects.
The false-positive rate is determined for every check. The overall false-positive rate of
the implemented tool is estimated by averaging the results of all checks. Further, the
average false-positive rates are given for checks categorized as errors and warnings
respectively.

6.3.4 RQ4: How did large projects evolve over time with regard to the
number of findings and size?

Requirements for the study objects to be suitable candidates for this research question
are project coherence and longevity. The first requirement eliminates the study objects
Helm Stable and Bitnami as suitable candidates because they are platforms to share and
retrieve charts rather than coherent projects. The second requirement eliminates the
study objects Alpha and Karch because the analyzed Kubernetes manifests have been
developed over a relatively short period of time. Due to the results of RQ2 described
in Subsection 6.5.2 that 83% of the charts fail to render locally the Beta study object is
rejected as candidate in this research question.
The Zalando study object is a coherent project evolving since October 2016. The analysis
period for this research question is from February 1st, 2017 until September 30th, 2020
because the analyzed directory has been created on January 25th, 2017. The number of
findings and the project size represented by the number of lines of code are measured
over time. The findings density is defined as the number of findings per 1,000 lines of
code. It is determined for the whole project, as well as for every best practice category
as defined in Chapter 4.

6.4 Study Objects

The evaluation is conducted on six study objects. The study objects comprise four
open source projects published on GitHub, as well as two closed source projects. The
most important criterion for the selection of study objects is project size with regard to
Kubernetes manifests. A balanced ratio between study objects using Helm charts and
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study objects only using static Kubernetes manifests is another important factor for the
selection process. The characteristic information of each study object is summarized in
Table 6.1.

6.4.1 Helm Stable

Helm itself provides an open source repository which serves as a platform for every-
body to share their Helm charts publicly [27]. These charts contain popular software
applications which can be deployed with Kubernetes out of the box. The repository
was created in October 2015 and 13,014 commits were made until September 27th, 2020.
It includes a directory called "stable" containing the latest stable version of the shared
charts. This directory is analyzed as a study object for this evaluation. It contains 282
charts consisting of 3,415 Kubernetes manifests and configuration files with 267,546
lines of code.

6.4.2 Bitnami

Bitnami is a company offering application packaging in order to enable customers to
quickly deploy software on any platform. Similar to Helm, it provides an open source
repository with ready to launch Helm charts [4]. The repository was created in March
2016 and comprises 6,459 commits until September 27th, 2020. It contains 75 charts
consisting of 1,205 Kubernetes manifests and configuration files with 158,643 lines of
code.

6.4.3 Zalando

In October 2016, Zalando published an open-source repository called "Kubernetes on
AWS" on GitHub. It contains custom configuration templates for the specific Zalando
use case to provision Kubernetes on Amazon Web Services [52]. The configuration
templates are all static Kubernetes manifests but some are modified by a templating
software assigning placeholders to fields. These placeholders must be replaced by actual
values before deployment. The project description already tells us that the configuration
templates are not in a ready to launch state because of missing values. It also explains
that the configuration depends on four components. Some of them are developed
in-house at Zalando and not available as open source software at this moment [9]. One
component this project depends on is the Cluster Lifecycle Manager (CLM) developed
by Zalando. The CLM’s main purpose is polling the Cluster Registry and updating
the cluster to the desired state [28]. The desired state is described in Kubernetes
manifests which are stored in repositories like the "Kubernetes on AWS" repository.
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Furthermore, the CLM contains the templating component which is responsible for
filling the templates with actual values [34]. Executing this templating software of CLM
and having access to all values would be mandatory to analyze all Kubernetes manifests
of this project. But even when manifests with parameterized values are excluded this
project remains the biggest collection of solely static Kubernetes manifests discovered
on GitHub during the search of study objects for this thesis.
The repository’s default branch is "dev" and its cluster/manifests directory which
contains the Kubernetes manifests is analyzed as the study object for this evaluation.
From the creation date until September 27th, 2020 2,357 commits were made on "dev".
The study object comprises 190 Kubernetes manifests and configuration files with 17,993
lines of code. Excluding files with parameterized values 110 Kubernetes manifests and
configuration files with 9,139 lines of code remain.

6.4.4 Karch

Karch is an open source project which simplifies sharing Kubernetes cluster topolo-
gies [33]. It was created in August 2017 and comprises 80 commits until June 17th,
2019. The project contains a test cluster with static Kubernetes manifests located at
aws/test/k8s. These 13 Kubernetes manifests with a total of 2,440 lines of code form
the study object analyzed in this evaluation. Despite the fact that it is only a test cluster
which was created over a short period of time and is not actively worked on anymore,
it is still the second biggest collection of only static Kubernetes manifests discovered on
GitHub during the search of study objects for this thesis.

6.4.5 Alpha

Alpha is the name given to a closed source project within the scope of this thesis. It
is a project of an industry partner from the reinsurance domain. Alpha is a company
internal project which uses Kubernetes for orchestration and deployment. The project
was started in May 2019 and 1,367 commits were made until September 27th, 2020. At
the point of evaluation Alpha consists of 464 Kubernetes manifests and configuration
files with 31,755 lines of code. The project contains 2 Helm charts.

6.4.6 Beta

Within the scope of this thesis Beta is the name for a closed source project owned by
an industry partner from the reinsurance domain. In Beta, Kubernetes is used for
orchestration and deployment. The project was created in May 2018 and 1,154 commits
were made until September 27th, 2020. At the point of evaluation it has 184 Kubernetes
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manifests and configuration files with 6,246 lines of code. Beta includes 29 Helm charts
representing the largest part of the Kubernetes related resources within the project.

Table 6.1: The characteristics of the study objects.

Name Creation Date Commits Lines of Code Helm Charts Open Source

Helm Stable October 2015 13,014 267,546 282 3

Bitnami March 2016 6,459 158,643 75 3

Zalando October 2016 2,357 9,139 0 3

Karch August 2017 80 2,440 0 3

Alpha May 2019 1,367 31,755 2 7

Beta May 2018 1,154 6,246 29 7

6.5 Results

This section presents the results of this evaluation for each research question.

6.5.1 RQ1: What finding densities can be observed when running our tool
on the study subjects?

The values for the Lines of Code metric are presented in Table 6.1. The number of
findings and the findings densities for each study object are presented in Table 6.2.
The findings density for half of the study objects is in the range of 19.59 and 24.4.
High findings densities are detected for Karch (47.54) and especially Alpha (66.76).
The lowest findings density has Bitnami with 11.95. The average findings density
considering the results of all study objects is 31.87 findings per 1,000 lines of code.

Table 6.2: The Number of Findings and the Findings Density for each Study Object.

Project Findings Findings Density

Helm Stable 5,240 19.59
Bitnami 1,895 11.95
Zalando 223 24.4
Karch 116 47.54
Alpha 2,120 66.76
Beta 131 20.97
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6.5.2 RQ2: Which checks produce the most findings and which best
practice group is violated most often?

Table 6.3 presents the checks that produce the most findings. Table 6.4 displays the
number of errors and findings per best practice group for each study object, whereas
Table 6.5 summarizes the number of findings for each best practice group.
Zalando, Karch and Alpha have 0 errors and Bitnami has 1 error. A lot of errors
occurred during the analysis of Beta (24) and Helm Stable (134). Use Labels is the
check producing the most findings for one half of the study objects. The other half
has Set Limits as the most findings producing check, followed by Set Requests on the
second place. Nine different checks made it among the 3 checks which produce the
most findings for at least one study object. Seven out of these 9 checks report findings
if the Kubernetes default settings are used. The most violated best practice group is
Security for 5 out of the 6 study objects. Only Zalando has a different best practice
group being violated the most with 100 findings for the Structure category.

6.5.3 RQ3: What false-positive rate needs to be expected from our tool?
Which checks produce the most false-positives?

Table 6.6 summarizes the results for this research question. Nine different checks have
been determined among the 3 most findings producing checks for all study objects. For
the checks covering the best practices Set Requests (Section 4.2.1), Set Limits (Section
4.2.2), Use Labels (Section 4.4.1), Set Termination Grace Period (Section 4.3.6), Stable API
Version (Section 4.1.1) and Disable Automatic Mount of Service Account Token (Section
4.1.10) the determined false-positive rate is 0%. The checks for Do Not Set Namespace
to Default in Manifests (Section 4.4.3) and Require Network Policies (Section 4.1.15)
have a false-positive rate of 100%. The result for the Run as High User (Section 4.1.4)
check’s false-positive rate is 20%.
The overall estimated false-positive rate for the implemented tool is 24.44%. The
false-positive rate for errors is 24% and for warnings 25%.

6.5.4 RQ4: How did large projects evolve over time with regard to the
number of findings and size?

The results are visualized in two charts. Figure 6.1 displays the metrics Lines of Code,
Number of Findings and Findings Density for the Zalando project. Figure 6.2 shows
the findings densities for the best practice categories Security, Resource Management,
Availability and Structure.
The project size increased from 1,138 lines of code in February 2017 to 11,565 lines
of code on September 18th, 2020 before it dropped down and ended at 9,159 lines of
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Table 6.3: The 3 Checks producing the most Findings for each Study Object.

Project
Most Findings Producing Check

1 2 3

Helm Stable
Set Limits Set Requests Run as High User

821 735 565

Bitnami
Set Limits Set Requests DNSNtDiM1

268 220 195

Zalando
Use Labels DAMoSAT2 Set Termination Grace Period

100 34 13

Karch
Use Labels DAMoSAT2 Stable API Version

31 18 11

Alpha
Use Labels Require Network Policies Run as High User

358 234 205

Bet
Set Limits Set Requests Run as High User

18 18 15

1 Abbreviation for Do Not Set Namespace to Default in Manifests
2 Abbreviation for Disable Automatic Mount of Service Account Token

Table 6.4: The Number of Errors and Findings per Best Practice Category for
each Study Object.

Project Error1 Category
Security Resource Management Availability Structure

Helm Stable 134 2,272 1,665 794 375
Bitnami 1 824 535 288 217
Zalando 0 83 21 14 100
Karch 0 60 12 13 31
Alpha 0 781 481 498 358
Beta 24 51 37 10 9

1 The Errors produced during the Helm local rendering process or while parsing the
Yaml Kubernetes resources

Table 6.5: The Number of Findings reported for each Best Practice Category.

Category Findings

Security 4,071
Resource Management 2,751
Availability 1,617
Structure 1,090
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Table 6.6: The false-positive rates for the checks producing the most findings, the false-
positive rates for error findings, warning findings and an estimation for the
entire tool.

Group False-Positive Rate

Use Labels 0%
Set Limits 0%
Set Requests 0%
Run as High User 20%
Stable API Version 0%
Require Network Policies 100%
Set Termination Grace Period 0%
Disable Automatic Mount of Service Account Token 0%
Do Not Set Namespace to Default in Manifests 100%
Error Findings 24%
Warning Findings 25%
Implemented Tool 24.44%

code. The number of findings started with 129 and increased until it reached its peak
with 322 findings on December 2nd, 2019. Then it decreases and is at 219 findings on
September 30th, 2020. The findings density for the project decreases almost continu-
ously disregarding minor spikes. It started with a value of 116.2 and ended with 23.9
findings per 1,000 lines of code.
The findings density values for the categories Security (66.3 to 6.8), Resource Manage-
ment (28.1 to 1.8) and Availability (14.1 to 1.1) also decreased consistently over time.
On November 22nd, 2017 was a drop from 19.7 to 9.2 in the findings density metric for
the Resource Management category. The findings density for the Structure category
stayed in the range of 5.1 and 9.5 from February 1st, 2017 until November 29th, 2018.
Then it was between 14.9 and 26.3 until August 19th, 2020 before it dropped back down
and is at 10.6 on September 30th, 2020.
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Figure 6.1: The findings trend for the study object Zalando

Figure 6.2: Findings densities for the best practice categories as defined in Chapter 4
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6.6 Discussion

In this section the results are discussed. For every research question the results are
interpreted, comparisons are made among the study objects and the results are put into
context if necessary.

6.6.1 RQ1: What finding densities can be observed when running our tool
on the study subjects?

The results show that the Alpha study object has the significantly highest findings
density. One fact regarding the study object is that Alpha is a relatively young project.
This could support the hypothesis made in Subsection 6.1.4 that the findings density is
higher at the beginning of a project and decreases for long-living projects.
The findings density for study object Karch is also above average. An explanation for
this result is that the analyzed files represent a test cluster for test purposes only. Given
these circumstances it might be justifiable to disregard some best practices.
The other study objects are below average and especially the Bitnami study object has a
low findings density of 11.95 indicating a high quality of the Kubernetes resources. An
average of 31.87 findings per 1,000 Lines of Code shows that the tool is able to provide
the developer a significant amount of feedback regarding the analyzed Kubernetes
configuration.

6.6.2 RQ2: Which checks produce the most findings and which best
practice group is violated most often?

In this section the results of RQ2 are interpreted. First the errors are discussed followed
by the most violated best practice groups. Then the checks producing the most findings
are discussed.
The expected amount of errors occurring during the execution of the prototype is zero.
That is the case for 50% of the study objects. During the local rendering process of 75
Helm charts of the Bitnami study object one error occurred. This amount is tolerable as
it indicates a misconfiguration in the chart and not a limitation in the prototype. The
Helm Stable study object containing 282 charts produced 134 errors. Out of these errors,
124 are deprecation warnings and these warnings do not cause the local rendering
process to fail. Thus, they do not hinder the analysis afterwards. The remaining errors
are due to missing values. That is a best practice violation as defined in Subsection
4.4.4. However, it can be explained by Helm Stable’s special situation. Helm Stable is
not the typical project which uses Kubernetes to orchestrate and deploy one or multiple
applications. Instead, it is a platform to publicly share Helm charts which can be used
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as templates for other projects. These templates need customization when added to the
actual project. It does not make sense to specify a default value for a password while
it is only meant as a template on a public platform. In the contrary, leaving out some
values which are required but are project dependent can help the end user to notice
these values. A surprising result is that local rendering failed for 24 out of 29 Helm
charts in the Beta project. The reason is that the 24 charts depend on multiple files
to provide values for the local rendering process. It would require a modified Helm
command specifying the extra files. The prototype is only capable to render charts with
the basic structure. A solution to analyze these Helm charts would be to render the
charts up front and provide the resulting static Kubernetes manifest as input for the
prototype.
The hypothesis that the Security best practice is the least violated best practice group
did not hold. In the contrary, it is the most violated best practice group for 5 out of
6 study objects. This result can be explained by the number of checks implemented
per best practice group. From the Security category 11 best practices are covered
whereas the second largest category Resource Management has 6 best practices being
checked. The related work introduced in Chapter 3 shows that research has been done
especially regarding security vulnerabilities and best practices in the Kubernetes context.
This research seems to have an effect on the number of defined best practices where
the Security category exceeds the other categories. But it apparently did not cause
developer teams to pay special attention to the security best practices for Kubernetes so
that they integrate mechanisms to adhere to them.
The study objects Helm Stable and Bitnami affect the special circumstance that they are
a platform providing Helm charts as templates and that they are not actual projects
being deployed themselves. For both projects the checks for Set Limits 4.2.2 and Set
Request 4.2.1 produced the most findings. An explanation for this result could be
that the chart creators neglect this configuration part based on the fact that they do
not know the resource capabilities of the cluster the chart is deployed on in the end.
But they do know the minimal amount of resources required for their application
which is specified in requests. They can also specify an appropriate limit in order to
adhere to best practices and serve the end user as a guideline. The result that the best
practice Do Not Set Namespace to Default in Manifests 4.4.3 is violated so often for
the Bitnami project can be explained by the project’s special circumstance as well. For
Helm charts it is good practice to specify the namespace in all template files and assign
it a placeholder. In the value.yaml file, the actual namespace name should be provided.
In Bitnami’s case where the charts function as templates, the actual namespace name
the chart will be deployed to is unknown. At this point it is best practice to specify
a default value in order to enable a successful local rendering of the chart, but at the
same time it violates the best practice Do Not Set Namespace to Default in Manifests
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under the given special circumstances.
The best practices Set Limits and Set Requests show a strong correlation. For 3 out of
the 6 study objects they are the two most violated best practices with nearly the same
amount of findings being reported for each of them. It indicates that either both are
defined correctly or none are defined at all.
Another interesting result is that the check for Use Labels 4.4.1 produced the most
findings for the study objects Zalando, Karch and Alpha. For the other 3 study objects
the check is never among the 3 checks producing the most findings. Adhering to the
best practice is a single conceptual decision which affects the entire project. The results
show that if the developer team of a project does not adhere to the best practice, the
check produces a high amount of findings because Labels must be defined for every
type of Kubernetes resources.
Nine checks made it among the 3 checks which produce the most findings for at least
one study object. Seven out of these 9 checks report findings if the Kubernetes default
settings are used. From these numbers, it can be deduced that best practices where
the developer has to actively specify some setting in order to adhere to it tend to be
violated more often. Possible explanations for this observation are that developers do
not know about the best practices they are violating with the default setting or they
have forgotten to specify this part of the configuration. If they specify a setting which
violates a best practice, it is less likely that they will revise their configuration because
they have concisely chosen this option.

6.6.3 RQ3: What false-positive rate needs to be expected from our tool?
Which checks produce the most false-positives?

The false-positive rate of 100% for the checks Do Not Set Namespace to Default in
Manifests 4.4.3 and Require Network Policies 4.1.15 are surprising results. One would
assume that they indicate that the checks are not working, but the result is caused by
special circumstances of the study objects where the analyzed files have been reported.
For the Do Not Set Namespace to Default in Manifests check the explanation for the
high false-positive rate is given in Subsection 6.6.2. The fact that Bitnami is not a project
being deployed but only providing Helm charts as templates makes it good practice to
specify the default namespace as default value. The cause for the 100% false-positive
rate for findings reported by the Require Network Policies check in the Alpha project is
the following. The Alpha developer explains that the external software NeuVector is
used to manage full life cycle container security. In NeuVector, policies can be defined
to control communication in the cluster making the need for network policies obsolete.
In both cases, special circumstances make it impossible to detect true-positives for the
corresponding check. In these situations, the check should be disabled for the project.
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The remaining 2 false-positives detected for findings produced by the Run as High
User 4.1.4 check are due to the use of external software as well. Alpha uses Kustomize
which is a tool to modify Kubernetes manifests. The base file is a Kubernetes manifest
shared by multiple parties. Each party can create a patch file containing modifications
for the base file. It enables the party to customize the base file without forking. The
false-positives have been detected in patch files. These patch files are not complete
Kubernetes manifests but only contain the modifications. The final base files created
after applying the modifications specified in the patch files are configured correctly
and thus, the reported findings are false-positives.
The estimated false-positive rate for the implemented tool of 24.44% is higher than
assumed. The false-positive rate for error findings is smaller than the rate for warning
findings, but the difference between them is less than expected. If the false-positives
produced by the checks for the best practices Do Not Set Namespace to Default in
Manifests and Require Network Policies are excluded, the overall false-positive rate for
the implemented tool would be 2.86%. The large discrepancy between the false-positive
rates once including all detected false-positives and once excluding false-positives,
where true-positives are impossible, demonstrate the importance to configure the
implemented tool correctly adapting to special circumstances of the analyzed project.
It further emphasizes the insufficiency of the sample size evaluated for this research
question. Consequently, the estimated false-positive rates for the entire tool and for
error findings and warning findings respectively are not meaningful.

6.6.4 RQ4: How did large projects evolve over time with regard to the
number of findings and size?

The hypothesis that the findings density increases over time holds for the analyzed
study project Zalando. It consistently decreased over the time of development. The
same development is observed in the categories Security, Resource Management and
Availability. It shows that the implemented tool should be used especially in the early
stages of a project. It helps the developer to detect weaknesses early on and making it
effortlessly easier to adhere to best practices from the beginning.
The hypothesis that the findings density for the Security category correlates less like the
overall findings density is rejected. The Security findings density decreases over time
as well and differs compared to the other categories only in the way that the findings
density is higher. This supports the conclusion described in 6.6.2 that existing research
led to more defined best practices resulting in more detected findings and a higher
findings density. But the fact that neglecting these best practices means to be more
vulnerable for attacks did not strengthen the importance of the security best practices
over availability or resource management related best practices. Developer teams do
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not focus more on security best practices as anticipated.
Structure’s finding density differs from the ones of the other categories. The findings
density stays on the same level within a small range for a long period of time. One
finding in the Structure category was that the default namespace is used. The rest are
findings reporting that a Kubernetes resource has no labels assigned. That indicates
that the policy which Kubernetes resources to label stayed the same. The larger changes
in the findings density are caused by adding or removing large chunks of code. It
demonstrates that the labels and the labeling guideline were not improved during the
time of the analysis. The changes in the findings density were only side effects of other
actions.

6.7 Threats to Validity

This sections depicts the threats to validity for this thesis. They are split in the two
groups internal validity and external validity. Internal validity describes threats to
validity regarding the prototype and the evaluation concept. External validity comprises
external factors threatening the validity of this evaluation regarding generalization.

6.7.1 Internal Validity

One threat to internal validity is the potential of undiscovered defects in the implemen-
tation of the source code analysis tool. Despite the extensive testing of the prototype, it
cannot be guaranteed that the documented limitations (see Section 5.4) are the only
ones in the implementation.
Another threat to internal validity is the choice of the study design. There may be better
suitable procedures to execute the evaluation. The number of checks and the number
of findings per check being analyzed to determine the false-positive rate is too small.
There is not sufficient data to derive the overall false-positive rate of the implemented
tool.
Measures were taken to prevent the misinterpretation of results. Experts reviewed the
findings regarding correctness. However, it remains possible that some interpretation
of results may be wrong.

6.7.2 External Validity

One threat to external validity is the insufficient size of the study objects. The choice of
study objects is a threat to external validity as well because there are special circum-
stances regarding the study objects which need to be considered. Helm Stable and
Bitnami are projects where different developer teams can share their Helm charts. The

47



6 Evaluation

charts are templates with some parts being generalized. They are not intended to be
deployed in this version. Alpha and Beta rely on external software and this factor is
disregarded by the source code analysis tool. Zalando uses unpublished software to
parameterize values in their Kubernetes manifests. These special circumstances could
have an unforeseen influence on the evaluation results and due the small number of
study object the impact could be significant. The findings of RQ4 cannot be generalized
because the study was conducted on a single study object.
Another threat to external validity is the proneness to human error regarding RQ3. The
findings validity was checked manually by the author of this thesis and Kubernetes de-
velopers of the projects Alpha and Beta. They answered to the best of their knowledge,
but some assessments may be incorrect.
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In this thesis, a static source code analysis tool was implemented. It analyzes Ku-
bernetes manifests and Helm charts in order to detect best practice violations. The
limitations (see Section 5.4) and the threats to validity (see Section 6.7) depict the
weaknesses of the implemented tool and the evaluation of it. Accordingly, we provide
suggestions for future work to improve upon this thesis.
The implemented tool can be extended by identifying more Kubernetes related best
practices and implementing checks which detect if they are violated. Another way to
improve the implemented tool is to refine on the method to identify relevant source
files for the analysis. Currently, the basic search finds all Kubernetes manifests but it
also accepts some non Kubernetes files and the algorithm can be more specific and go
in to more detail to automatically select Kubernetes manifests more accurately. The
third option to extend the implemented tool is making it recognize the use of popular
external software and react accordingly. The integration of Helm can be used as an
example, so that a similar approach can be used for the integration of other external
software like Kustomize. Taking Kustomize as an example, the tool should be able to
detect patch files, locate the targeted base file, execute Kustomize to create the merged
Kubernetes manifest and analyze it to detect best practice violations in this final version.
The evaluation conducted in this thesis should be replicated in a larger scale on many
diverse study objects. The metrics used for the evaluation could be optimized, for
example by replacing the metric Lines of Code for the metric Source Lines of Code. This
would remove whitespace and comments when determining the project size. Whites-
pace and comment lines cannot cause any findings being reported by the implemented
tool and thus, they are irrelevant for this evaluation. They should be excluded in order
to minimize the gap of differences in development that some developer teams use a
lot of whitespace and comments for structure and organization while others do not.
This results in a more fine-grained and accurate calculation of the findings density
which is an important factor in this evaluation. For replication studies of this work,
the study design could be improved by adding a review process for the assessment of
false-positives. Shamim, Bhuiyan, and Rahman [43] use a methodology which includes
a manual assessment, followed by a verification step to mitigate the first author’s bias.
This approach could be integrated similarly in this evaluation reducing the threat to
external validity that the evaluation results are prone to human error.
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One interesting follow-up research improving upon this thesis would be to conduct
a long-term study where developer teams actively use the implemented tool in order
to assess and improve their Kubernetes project. Spillner [44] uses a similar method-
ology to evaluate the false-positive rate and the developer’s acceptance of the tool
HelmQA which recommends quality improvements for Helm charts. The developers
should be integrated in the study. They provide comprehensive knowledge about
their projects and should be responsible to configure the implemented tool correctly.
This configuration includes aspects like disabling irrelevant checks for the project due
to external software being used. During the evaluation period the developers could
flag every finding they looked at either as false-positive or as accepted true-positive.
This approach could lead to a sufficient amount of data to determine a meaningful
false-positive rate. Interesting research questions with the described study design
would be evaluating the effect of the tool regarding Kubernetes quality improvement
over a period of time and determining the false-positive rates for the tool, individual
checks and best practice groups.
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In this thesis, 34 best practices regarding security, resource management, availability
and structure of Kubernetes manifests were elaborated on. A static source code analysis
tool was implemented. It detects violations of 26 out of the 34 presented best practices
(see Table 5.1). The tool analyzes Kubernetes manifests and Helm charts and reports
findings categorized as error or warning.
As a first step, the implemented tool identifies all Kubernetes manifests and Helm
charts within the project. Then, it executes Helm to locally render the charts to static
Kubernetes manifests. Kube-Score and the checks implemented in this thesis analyze
all Kubernetes manifests and report findings if best practices are violated. A finding
describes the issue, specifies the location where it occurred and gives recommendation
how to fix the best practice violation.
The implemented tool reported on average 31.87 findings per 1,000 Lines of Code. It
shows that the tool is able to provide the developer a significant amount of feedback
and recommendations regarding the analyzed Kubernetes configuration. Security was
the most violated best practice group for 5 of the 6 study objects. An explanation
for this result is the fact that it is the largest best practice group comprising 11 best
practices being checked by the tool. The check producing the most findings for one
half of the study objects was Use Labels (see Subsection 4.4.1) because the violation
of this conceptual best practice leads to a high amount of findings. Set Limits (see
Subsection 4.2.2) and on the second place Set Requests (see Subsection 4.2.1) were the
most findings producing checks for the other half of the study objects indicating a high
correlation between these two best practices. The local rendering failed for 24 out of
the 29 Helm charts of the Beta study object. The reason is that the charts depend on
multiple files providing values for the parameterized fields in the templates, but this
special behavior is not supported by the tool. The tool only executes the basic Helm
command to render the charts locally and it expects it to work as an adherence to the
best practice described in Subsection 4.4.4. The determined false-positive rate for the
tool was 24.44% if the tool is not configured according to the analyzed project’s special
circumstances. 20 of the 22 identified false-positives were reported by checks which
could not produce true-positive findings because of the project’s special circumstances.
If these false-positives are excluded, then the implemented tool would have a false-
positive rate of 2.86%. The sample size the false-positive rates are based on was too

51



8 Conclusion

small in order to give meaningful results. Monitoring the evolution of a study object
showed that the findings density decreases over time. The implemented tool is the most
valuable in the early stages of a project where it detects the highest findings density.
It lets the developers detect the violations effortlessly and supports them to adhere to
best practices from the beginning.

In sum, the implemented static source code analysis tool successfully analyzes static
Kubernetes manifests and detects best practice violations in practice especially in the
security context. The usage of external software can limit the effectiveness of the tool.
The correct configuration of the tool is crucial in order to minimize errors during the
execution and false-positives among the reported findings. The configuration includes
disabling checks which are obsolete due to special circumstances of the project like
using external software. It may also comprise the preparation of the Kubernetes data, so
that the implemented tool receives only input it can handle which are static Kubernetes
manifests and Helm charts.
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