
Better Feedback Times Using Test Case Prioritization?
Mining Data of Past Build Failures in an Automated Benchmark

Jakob Rott♣, Rainer Niedermayr♠, Elmar Jürgens♣
♣CQSE GmbH, München ♠Ergon Informatik AG, Zürich
{rott, juergens}@cqse.eu rainer.niedermayr@ergon.ch

Abstract
In software projects with growing functionality, the
number of tests increases fast which results in long
execution times for the whole test suite. As a conse-
quence, it is not possible to always execute the whole
test suite after each commit so that feedback time to
developers increases. With long test feedback times,
the effort for an early fix rises and developers can be
hindered in productive work.

One solution to reduce feedback times is test case
prioritization. Although test prioritization strategies
have been extensively studied, they are rarely used in
practice and their benefits are widely unknown.

In this paper, we present a benchmark framework
to evaluate the benefits of different test prioritization
algorithms on open source projects and primarily use
the time until the first failure (TUFF) as relevant met-
ric. We conducted an empirical study with 31 open-
source projects hosted on GitHub, using data of 437
builds that failed on the CI server. In 75% of the
builds, the first test will fail within the first 18% of
the total test suite’s duration.

1 Introduction
Regression testing is well established to check that
code changes do not break previously working func-
tionality. A challenge in regression testing are more
and more enlarging test suites. In practice, many de-
velopment environments use retest all strategies that
run all tests in no specific order. While this can be
feasible in before-release testing, the problem of (too)
long lasting test suites gets more severe in projects
that want to test continously: It is not possible to
execute all available tests after each commit or push
in reasonable time. Test suites with a huge number
of test cases are necessary for evolving systems but
come with increasing costs and long execution times
that make it hard to give fast feedback to develop-
ers about successful or failing tests. To conquer this
problem, different approaches can be used:
– Regression Test Selection (RTS) techniques reduce

testing time by running only a subset of tests of
the complete test suite—Engström et al. present a
survey on RTS techniques in [1].

– Test Case Prioritization (TCP) strategies that order
tests in respect to certain goals, for example to re-

veal faults early—see [3] for common methods.
In the present study, we focus on benefits to de-

velopers in terms of a fast notification about a failing
test. We therefore limit our investigated prioritization
algorithms to TCP strategies, as longer lasting builds
with all tests passing are accepted.

We designed a benchmarking system to assess TCP
techniques in real-world software. It uses data from
past builds and unveils how long a test suite would
run until the first failure—that actually occurred on
the build server—using different prioritization strate-
gies. We used the time until first failure as metric in our
benchmark. Having fast feedback from the CI system
is not only beneficial for the developer (e.g., less or
easier context-changes for rework) but also saves time
and resources.

2 Approach
Build logs were collected from TravisCI and parsed to
extract builds with test failures. Those builds should
serve as study objects.

We evaluated seven different prioritization algo-
rithms on those builds:
– An algorithm that takes into account recent changes
in production and test code as well as per test ex-
ecution times and code coverage. (Abbreviated as
F3D.)

– Sorting test cases ascending by the duration of their
last run. (DUR)

– Sorting test cases descending by their speed in lines
per second. (LPS)

– Two algorithms that use the number of transitive
method calls, one not counting already called meth-
ods (additional variant, ANC) and one counting
them (total strategy, TNC).

– An algorithm, following [2], that sorts the test cases
by their string distance among each other. (DIS)

– Random ordering of the test cases. (RDM)

Input data for the algorithms (i.e., code changes and
coverage) was calculated based on the last preceding
passing build. The result of a single algorithm was a
sorted test list that represents the execution order in
the test run. The time until first failure was determined
by calculating how long it would take to reach any
test in the set of failed tests.



Figure 1: Statistics how fast a build would fail using the different
prioritization strategies.

3 Evaluation
The evaluation should answer which TCP algorithm
shortens the time until first failure in a test run most.

Methodology For each failing build, the prioriti-
zation algorithms were applied. Using the duration
of the last test execution, we calculated how long it
would take to execute the ordered test cases until the
first failure of the build occurs.

To statistically evaluate whether the prioritization
algorithms differ in these times, we calculated an ana-
lysis of variance (ANOVA). It reveals if the algorithm
has a significant effect on the time to first failure. Fol-
lowing, we used Student’s t-tests to pairwise compare
the times. Hence, the results express whether, in a
pair of algorithms, one performs significantly better—
meaning it reaches a failing test earlier. We used the
significance level α = 5% for the ANOVA and t-tests.

Results Figure 1 shows the distribution of the times
to first failure for the algorithms visualized as box-
plots1. Besides, the results of the Student’s t-tests are
presented in Table 1. It shows that there are relevant
differences in pairwise comparison.

Discussion F3D and DUR are both faster than the
other 5 algorithms. F3D and DUR show no significant
performance difference among each other. Each of the
algorithms beside F3D and DUR is significantly slower
than at least two other algorithms and faster than
at most one algorithm. In terms of finding failing tests
early, F3D and DUR are the most promising algorithms.
Regarding the t-tests, they are similarly fast and also
the boxplots in Figure 1 show alike distributions.

The speed-based algorithm LPS works slightly
worse. A possible reason can be fast large but free of
failures tests that are executed early before the failing
test—that has a lower speed in lines per second.

TNC and DIS perform clearly worse. They do
not differ in pairwise comparison. Slightly better is
the performance of ANC that takes into account only
prior uncalled methods.

Noticeable is the measured performance of RDM:
In 50% of the builds the first failure was found in be-

1The whiskers follow the definition of John Tukey, have a
maximum length of 1.5 times the interquartile range (IQR) but
can be shorter if the maximum value is nearer to the box.

Table 1: Shows significant (sig.) differences in the average times
to failure over the different algorithms in pairwise comparison (t-
test). A checkmark is drawn if the algorithm in the row is sig.
faster than the algorithm in the column.

F
3D

D
U
R

L
P
S

T
N
C

A
N
C

D
IS

R
D
M

F3D 7 3 3 3 3 3

DUR 7 3 3 3 3 3

LPS 7 7 3 3 3 7

TNC 7 7 7 7 7 7

ANC 7 7 7 3 3 7

DIS 7 7 7 7 7 7

RDM 7 7 7 3 3 3

low 15% of the total execution time. We investigated
this issue and revealed that in two projects often a
huge number of test cases failed which increases the
expectation value of the RDM’s performance.

Threats A threat to the internal validity of the re-
sults is that 327 (75%) of the investigated 437 builds
were taken from 6 (19%) of the 31 projects. Project-
specific effects in those 6 projects have a larger impact
on overall results.

Another threat is that we did not execute the tests
in the prioritized order. Instead we calculated hy-
pothetical execution times. Due to capabilities of the
testing system and interdependencies of tests, it might
not always be possible to run tests in the proposed
order. However, further feasible execution orders of
tests can be enabled by enhanced testrunner imple-
mentations in the future.

4 Conclusion
In this paper we presented a benchmarking system
for test prioritization algorithms and an exemplary
study with projects hosted on GitHub and using past
build data from TravisCI. This offers a new view on the
performance of TCP algorithms.

The results show that there are differences in the
performances of TCP algorithms in various aspects.
The proposed benchmark enables a quick and com-
paratively easy uncovering of them.

Acknowledgment
This work was partially funded by the German Federal
Ministry of Education and Research (BMBF), grant
“Sofie, 01IS18012A”. The responsibility for this article
lies with the authors.

References
[1] E. Engström, P. Runeson, and M. Skoglund. A system-

atic review on regression test selection techniques. In-
formation and Software Technology, 52(1):14–30, 2010.

[2] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran.
Prioritizing test cases with string distances. Auto-
mated Software Engineering, 19(1):65–95, 2012.

[3] S. Yoo and M. Harman. Regression testing mini-
mization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 22(2):67–
120, 2012.


