-- Since this post accompanies a talk in German, it is written in German, too.
Machine Learning hat uns im privaten Bereich längst erreicht: Amazon schlägt mir Produkte vor, Netflix Filme. Oft treffen sie dabei sogar meinen Geschmack. Warum gibt es keine Software, die mir fundiert vorschlägt, was ich testen soll? Es gibt mehrere Ansätze in der Forschung, die das versprechen. Defect Prediction setzt beispielsweise Machine Learning auf historischen Fehlerdaten ein, um vorherzusagen, wo in meinem System mit hoher Wahrscheinlichkeit noch Fehler enthalten sein könnten. Inverse Defect Prediction identifiziert Bereiche, die vermutlich viel weniger Fehler enthalten, und eher ignoriert werden können. Aber wie gut funktioniert das wirklich in der Praxis?
Wir haben verschiedene dieser Ansätze selbst implementiert und eingesetzt. In diesem Vortrag stelle ich die Ergebnisse und Erfahrungen aus Forschung und Praxis vor --- sowohl die nützlichen als auch die Fehlschläge.
Read more...